22nd ASRC International Workshop

The investigation of the high-spin states in ³⁵S by in-beam gamma-ray spectroscopy

Sezgin AYDIN, Aksaray University, TURKEY

3-5 December 2014

I. Introduction and scientific motivation,

- 2. Experimental details,
- 3. Analysis and theoretical calculations,
- 4. Results and conclusions,

Introduction and Scientific Motivation

- sd shells \rightarrow fundamental testing ground for basic models
- Several interesting phenomena:

clusterization,

shape coexistence,

proton-neutron interaction

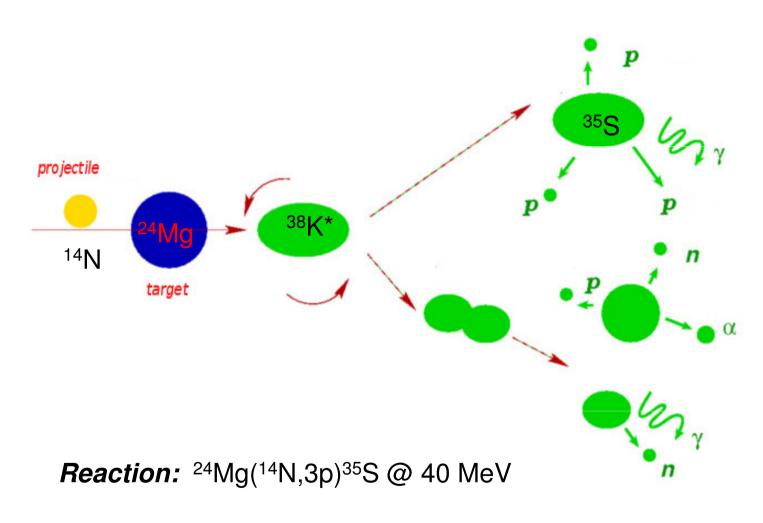
interplay between collective and single-particle motion.

More experimental data is needed to improve models.

- Previously ³⁵S has been populated via:
- ³⁴S(n,γ)
- S.Raman et.al Phys. Rev. C 32, 18 (1985).
- ³⁴S(d,pγ)
- R.M.Freeman et. al. Nucl. Phys.A 197, 529 (1972).
- ▶ ³⁷Cl(p,³He)
- A.Guichard et. al. Phys. Rev. C 12, 1109 (1975).
- ³⁷Cl(d,αγ)
- Th.W.Van Der Mark et al., Nucl. Phys.A 181, 196 (1972).
- ³⁵**P** β⁻ **Decay**
- E.K.Warburton et.al Phys. Rev. C 34, 1031 (1986).

No investigation by HI reactions,

No efficient detection system


Results:

low and medium spin states up to

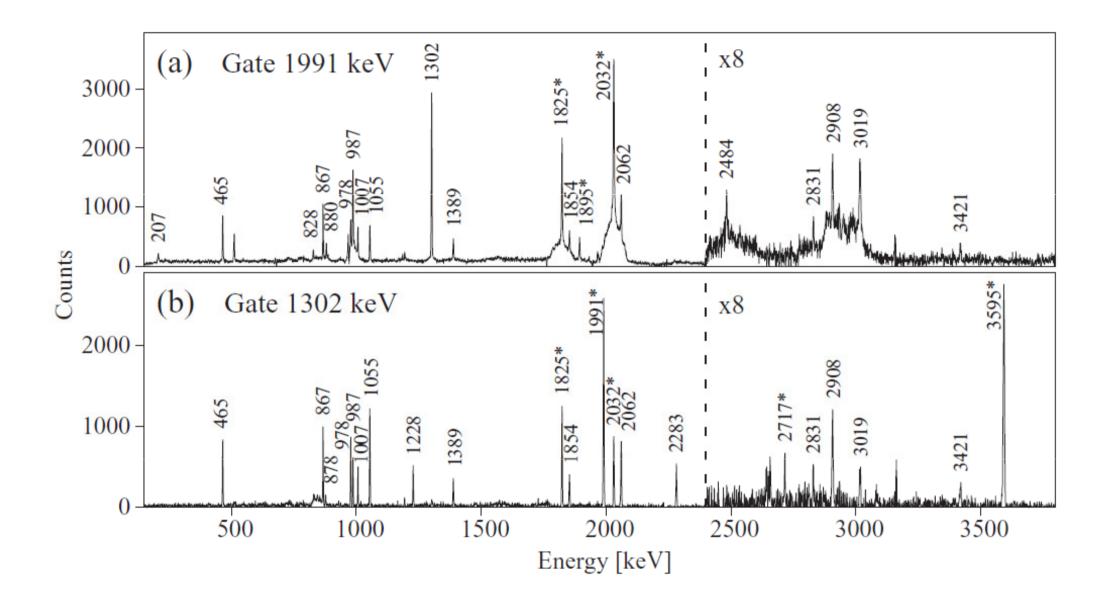
 $5/2^+$ for positive parity and

7/2⁻ for negative parity observed

Experimental details

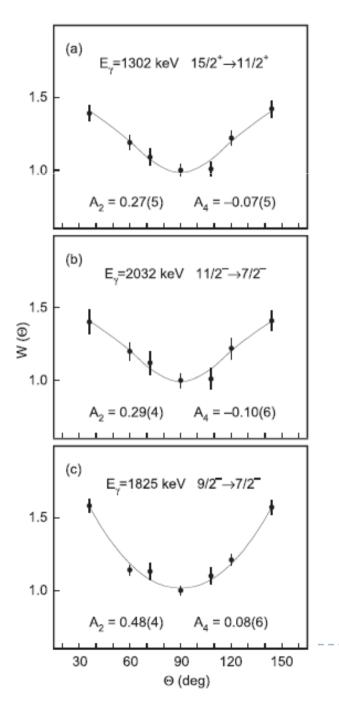
Target: ²⁴Mg on Au backing.

Detection: 4π-GASP array


D

GASP ARRAY*

- Was located in LNL, italy
- 40 HPGe detectors with anti-Compton shield.
- GASP angles: 34°(6), 60°(6), 72°(4), 90°(8), 108°(4), 120°(6) and 146°(6)
- Data sorted in γ - γ - γ cube
- γ-γ matrix and seven asymmetric matrices


*C.Rossi Alvarez Nuc. Phys. News Vol. 3, Iss. 3, 1993

S.Aydin et.al Phys. Rev. C 89, 0143310 (2014)

Angular Distribution Analysis

- Seven asymmetric matrices used.
- Information on the multipolarity.

and mixing ratio obtained.

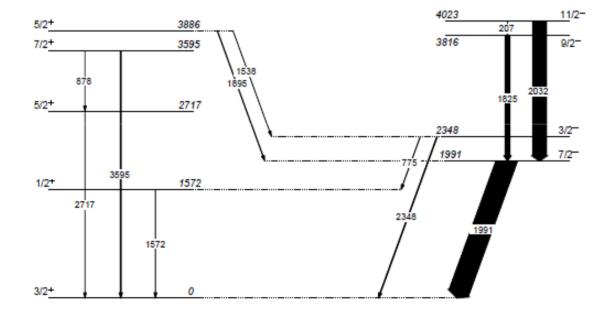
Fit→standard Legendre Polynomials

 $P_{2,4}(cos\theta)$ with free $A_{2,4}$

• Fit \rightarrow free mixing ratio δ and the

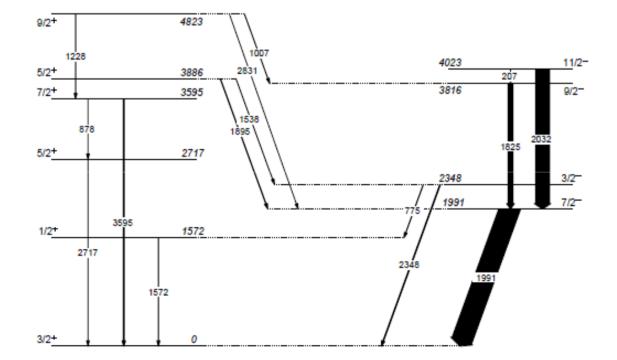
degree of alignment σ

For low intensity transitions

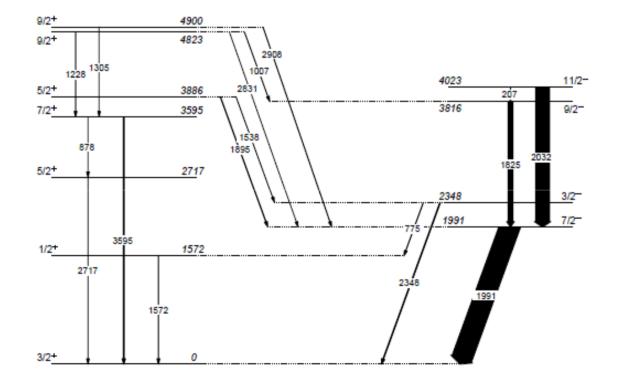

- Angular distribution measurement unfeasible,
- Multipolarity information obtained from:

$$R_{ADO} = \frac{I_{\gamma}(34^{\circ}) + I_{\gamma}(146^{\circ})}{2I_{\gamma}(90^{\circ})}$$

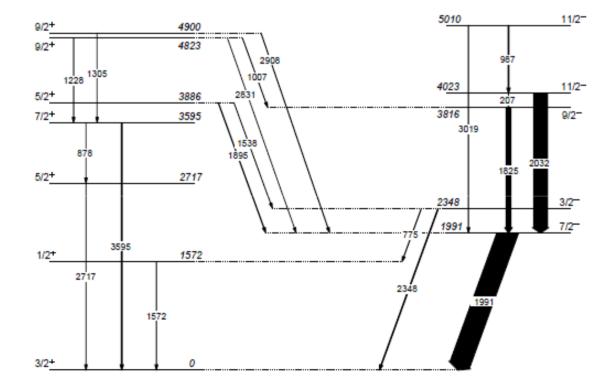
- Reference R_{ADO} is 0.8 for stretched dipole
 - I.4 for stretched quadrupole or $\Delta J=0$ pure dipole transitions
- \blacktriangleright For mixed character, R_{ADO} depends on mixing ratio $\delta.$

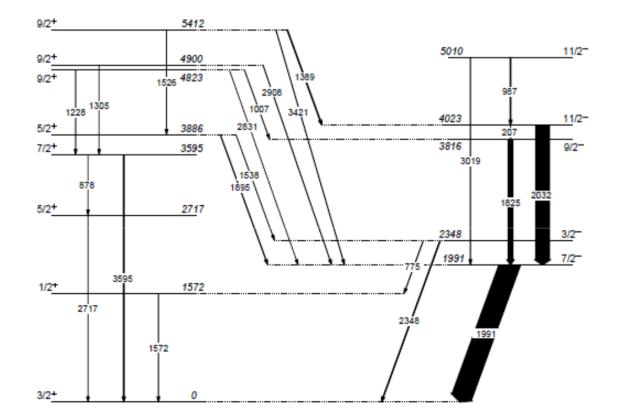


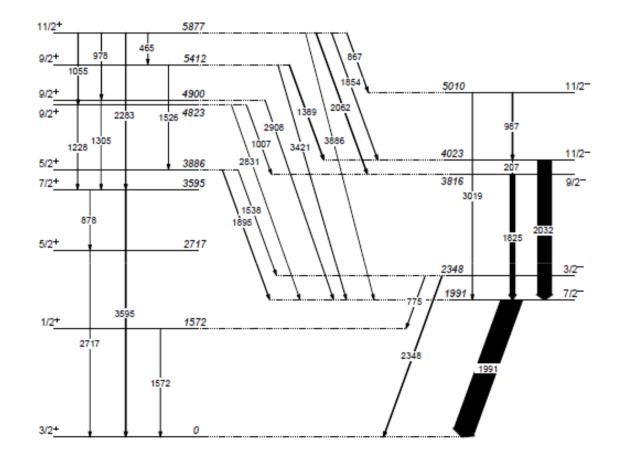
—



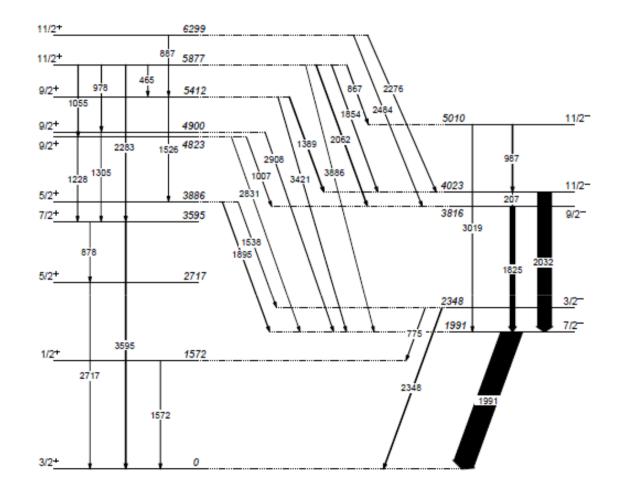
Ī

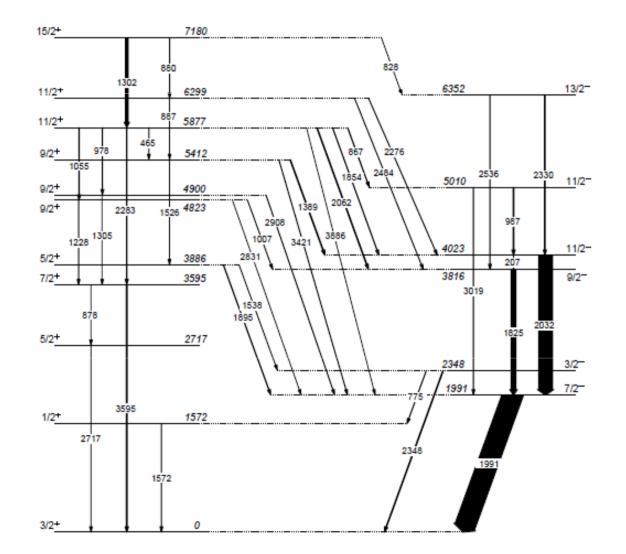



Ī

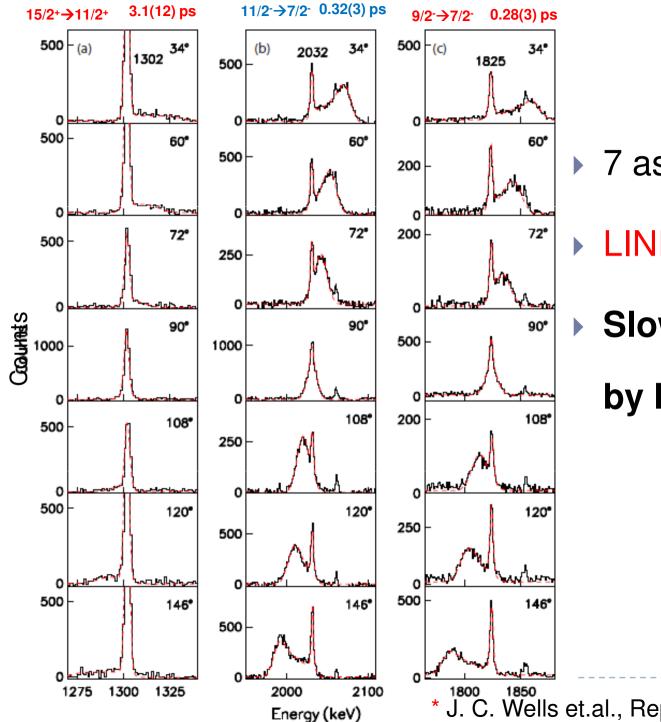


Ī




-

-


-

_

-

Doppler shift attenuation method (DSAM) Measurement

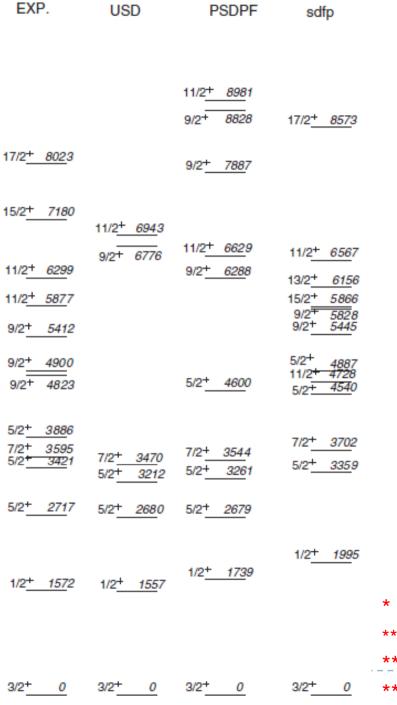
7 asymmetric matrices used.

LINE-SHAPE *

Slowing down simulation

by Monte Carlo

* J. C. Wells et.al., Report No. ORNL-6689, 1991, p. 44.


DSAM Measurement

Half-lives determined in the present work for excited states in ³⁵S.

E_x (keV)	J^{π}	$T_{1/2}$ (ps)
3816	9/2-	0.28(3)
4023	$11/2^{-}$	0.32(3)
5010	$11/2^{-}$	0.45(8)
6352	13/2-	0.05(1)
7180	$15/2^{+}$	3.1(12)
8023	17/2+	0.15(4)

D

Shell Model Calculation

- Shell-model code ANTOINE* used
- Different interaction and model space
- ► USD** \rightarrow not good for J>7/2
- ► PSDPF***→full psdpf with a ⁴He core
- ▶ $sdfp^{****} \rightarrow more$ than one particle-hole

excitation to the *fp shell* \rightarrow well prediction

* E. Caurier and F. Nowacki, Acta Phys. Pol. B **30**, **705** (**1999**). **B. H. Wildenthal, Prog. Part. Nucl. Phys. **11**, **5** (**1984**). *** M. Bouhelal et.al., Nucl. Phys. A **864**, **113** (**2011**). ****E. Caurier et.al., Phys. Lett. B **522**, **240** (**2001**).

Shell Model Calculation

EXP.	PSDPF	sdfp	
		13/2 <u>- 732</u> 8	• PSDPF \rightarrow Good agreement for full
13/2 <u>- <i>635</i></u> 2	13/2 <u>614</u> 3		J≤13/2 ⁻
11/2 <u>- 501</u> 0	11/2	11/2 <u>- 481</u> 6	► sdfp →results satisfactory
11/2 4023 9/2 3816	11/2 <u>- 409</u> 1 9/2 <u>- 383</u> 5	9/2- <u>3707</u> 11/2 ⁻³⁶³⁶	
3/2 <u>- 234</u> 8 7/2 <u>- 199</u> 1	3/2– <u>243</u> 0 7/2– <u>200</u> 3	3/2 <u>- 1695</u> 7/2 <u>- 147</u> 0	
3/2 <u>+ 0</u>	3/2 <u>+ 0</u>	3/2+ <u>0</u>	

Transition probabilities *B*(*M*1) and *B*(*E*2) for negative- and positive-parity states in ³⁵S compared to SM calculations

$E_{\rm lev}^{\rm exp}$	$T_{1/2}^{\exp}$	J_i^{π}	J_f^{π}	E_{γ}^{\exp}	BR ^b	$B(M1)(\mu_N^2)$				$B(E2)(e^2 \text{fm}^4)$			
(keV)	(ps)			(keV)	%	exp	USD	PSDPF	sdfp	exp	USD	PSDPF	sdfp
1572	2.3(4) ^a	$1/2^+_1$	$3/2^+_1$	1572	100	0.004(1)	0.024	0.020	0.002				
2717	0.069(24) ^a	$5/2^{+}_{1}$	$3/2^{+}_{1}$	2717	100	0.028(10)	0.032	0.038	0.000				
7180	3.1(1.2) ^b	$15/2^+_1$	$11/2^+_1$	1302	93(2)					45(17)	7	9	31
8023	0.15(4) ^b	$17/2^+_1$	$15/2^+_1$	844	100	0.44(12)	0.72	1.134	0.002				
3816	0.28(3) ^b	$9/2^{-1}_{1}$	$7/2_{1}^{-}$	1825	100	0.018(4)		0.019	0.008	23(8)		48	5
4023	0.32(3) ^b	$11/2_{1}^{-}$	$7/2^{-}_{1}$	2032	99(1)					51(5)		48	14
5010	$0.45(8)^{b}$	$11/2_2^{-}$	$11/2_{1}^{-}$	987	70(3)	0.064(12)		0.040	0.020				
		-	$7/2_{1}^{-}$	3019	30(3)					1.5(3)		1.3	21
6352	0.05(1) ^b	$13/2^{-}_{1}$	$11/2_{1}^{-}$	2330	66(10)	0.04(1)		0.037	0.001				
			$9/2_1^{-1}$	2536	34(5)					37(9)		26	18

^a:N.Nica et.al Nucl.Data Sheets **113,1** (2012)

^b: Present study

Experimental reduced transition probabilities **B(E1)**, **B(M2)**, and **B(E3)** in ³⁵S compared to shell model calculations performed with the code ANTOINE using the **PSDPF** residual interaction

$E_{\rm lev}^{\rm exp}$	$T_{1/2}^{\exp}$	J_i^{π}	J_f^{π}	E_{γ}^{\exp}	BR ^a	$B(E1)(e^2 \mathrm{fm}^2)$		$B(M2)(\mu_N^2 \text{fm}^2)$		$B(E3)(e^2 \text{fm}^6)$	
(keV)	(ps)			(keV)	%	exp	PSDPF	exp	PSDPF	exp	PSDPF
1991 2348	1020(50) ^a 0.81(14) ^a	$7/2_1^-$ $3/2_1^-$	$3/2^+_1$ $1/2^+_1$	1991 775	100 27(1)	$32(6) \times 10^{-5}$	54×10^{-5}	1.6(5)	2.11	115(86)	119
	()	-,-1	$3/2_1^+$	2348	73(1)	$31(6) \times 10^{-6}$	10×10^{-7}	45(18)	0.0044		

a:N.Nica et.al Nucl.Data Sheets 113,1 (2012)

Results and Conclusions

- 9 new excited states
- > 28 new γ-ray transitions.
- Firm spin-parity assignment to four previusly known levels.
- Half-life for 6 states by DSAM.
- SM prediction with different model spaces.
- Level scheme of ³⁵S improved.

Collaborators

S. Aydin,^{1,2} M. Ionescu-Bujor,³ F. Recchia,² S. M. Lenzi,² M. Bouhelal,⁴ D. Bazzacco,² P. G. Bizzeti,⁵ A. M. Bizzeti-Sona,⁵ G. de Angelis,⁶ I. Deloncle,⁷ E. Farnea,^{2,*} A. Gadea,^{6,8} A. Gottardo,^{2,6} F. Haas,⁹ T. Huyuk,⁸ H. Laftchiev,¹⁰ S. Lunardi,² D. Mengoni,^{2,11} R. Menegazzo,² C. Michelagnoli,² D. R. Napoli,⁶ A. Poves,¹² E. Sahin,⁶ P. P. Singh,⁶ D. Tonev,¹⁰ C. A. Ur,² and J. J. Valiente-Dobón⁶ ¹Department of Physics, University of Aksaray, Aksaray, Turkey ²Dipartimento di Fisica e Astronomia dell' Università and INFN, Sezione di Padova, Padova, Italy ³Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest, Romania ⁴Laboratoire de Physique Appliquée et Théorique, Université de Tebessa, Algeria ⁵Dipartimento di Fisica dell' Universitá and INFN Sezione di Firenze, Firenze, Italy ⁶INFN-Laboratori Nazionali di Legnaro, I-46020 Legnaro, Italy ⁷IPNO, IN2P3/CNRS et Université Paris-Sud, Orsay, France ⁸Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain ⁹IPHC, IN2P3/CNRS, Université de Strasbourg, Strasbourg, France ¹⁰Institute for Nuclear Research and Nuclear Energy, BAS, Sofia, Bulgaria ¹¹University of the West of Scotland, Paisley, United Kingdom ¹²Departamento de Física Teórica e IFT-UAM/CSIC, Universidad Autónoma de Madrid, Madrid, Spain

Thank you