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SPES CHALLENGES

- Development of a comprehensive model of
atomic nuclel — Do we understand the
stfructure and stabillity of the nuclear systems?e

- Understanding the origin of the elements and
modeling of the extreme astrophysics
enviroments

- Test of fundamental symmetries

- New applications of isotfope science
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Neutron number
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Evidence for a new nuclear ‘magic number’ from the

level structure of >*Ca

D. Steppenbeck’, S. Takeuchi?, N. Aoi®, P. Doornenbal?, M. Matsushita’, H. Wang®, H. Baba’, N. Fukuda?, S. Go', M. Honma*,
J. Lee?, K. Matsui®, S. Michimasa', T. Motobayashi’, D. Nishimura®, T. Otsuka®®, H. Sakurai®®, Y. Shiga’, P.-A. Soderstrom?,
T. Sumikama®, H. Suzuki?, R. Taniuchi®, Y. Utsuno®, J. J. Valiente- Dobén'® & K. Yoneda®

Atomic nuclei are finite quantum systems composed of two distinct
types of fermion—protons and neutrons. In a manner similar to
that of electrons orbiting in an atom, protons and neutrons in a
nucleus form shell structures. In the case of stable, naturally occur-
ring nuclei, large energy gaps exist between shells that fill completely
when the proton or neutron number is equal to 2, 8, 20, 28, 50, 82 or
126 (ref. 1). Away from stability, however, these so-called ‘magic
numbers’ are known to evolve in systems with a large imbalance of
protons and neutrons. Although some of the standard shell closures
can disappear, new ones are known to appear™”. Studies aiming to
identify and understand such behaviour are of major importance in
the field of experimental and theoretical nuclear physics. Here we
report a spectroscopic study of the neutron-rich nucleus **Ca (a
bound system composed of 20 protons and 34 neutrons) using
proton knockout reactions involving fast radioactive projectiles.
The results highlight the doubly magic nature of *'Ca and provide
direct experimental evidence for the onset of a sizable subshell clos-
ure at neutron number 34 in isotopes far from stability.

The shell structure of the atomic nucleus was first successfully
described more than 60 years ago'. However, the question of how
robust the dard magic bers are in ble nuclei with a large
excess of neutrons—often referred to as ‘exotic’ nuclei—has been one
of the main driving forces behind recent nudear structure studies that
focus on changes in the shell structure, called ‘shell evolution’. A note-
worthy example is the disappearance of the N = 28 (neutron number
28) standard magic number in 425j (ref. 4), a nucleus that lies far from
the stable isotopes on the Segre chart. On the contrary, exotic oxygen
isotopes® provide evidence for the onset of a new shell closure at
N = 16, one that is not observed in stable nuclei. In both cases, the
tensor force, a non-central component of the nuclear force, has a key
role in describing the experimental spectra®.

The region of the Segre chart around exotic calcium isotopes has also
contributed valuable input to the understanding of nuclear shell evolu-

d

N = 34isotones, which was suggested qualitatively more than a decade
ago'? on the basis of the general properties of nudear forces. The onset
of an appreciable subshell closure at N = 34 is illustrated in Fig. 1d,
indicating an energy gap between the vpy» and vz » SPOs in **Ca that
is comparable to the separation of the vps,» and vpy, spin-orbit part-
ners, which is also implied by recent theoretical results; see, for
example, ref. 14. We stress, however, that no N = 34 subshell dlosure
was reported in the experimental investigations of **Ti (refs 9, 15) or
*Cr (refs 11, 16), and notable doubt on this magic number for Ca
isotopes has been raised'”"®. Indeed, as indicated in Fig. 2a, theoretical
predictions of the energy of the first /7 = 27 state for **Ca vary con-
siderably, ranging from ~1 MeV in some cases to as high as ~4 MeV
in others'*'*=%, despite exhibiting close agreement for lighter iso-
topes; for example, the predictions of the same theories lie within only
0.4 MeV of the empirical result for *2Ca. Such stark discrepancies at
N = 34 reflect the need for direct experimental input on the matter.

To address this issue, we report on an experimental study of **Cato
clarify the strength of the N = 34 subshell gap in nuclei farther from
stability. The energies of nuclear excited states were investigated using
proton knockout reactions invelving **Sc and **Ti projectiles on a Be
target at the Radioactive [sotope Beam Factory, Japan, operated by the
RIKEN Nishina Center and the Center for Nuclear Study, University
of Tokyo. Experimental details are provided in Methods Summary.
Particle identification plots indicating the radioactive species trans-
ported through the BigRIPS separator and ZeroDegree spectrometer™,
which were used to select and tag radioactive beam projectiles and
reaction products, are presented in Fig. 3a and Fig. 3b, respectively.
‘We emphasize that the intensity of the radioactive beam reported here,
which was critical to the success of the experiment, is unique to the
Radioactive Isotope Beam Factory. Excited-state energies were deduced
using the technique of in-beam y-ray spectroscopy.

The y-rays measured in coincidence with **Ca projectiles produced
through the one- and two-proton knockout reaction channels are

tion over recent years owing to experimental Enh

I d in Fig. 4a. The y-ray energies measured in the laboratory

excitation energies of first /7 = 2" states (spin, J; parity, /7) and reduced
+y-ray transition probabilities, which are good indicators of nuclear shell
gaps, for 32Ca (refs 6, 7), **Ti (refs 8, 9) and *°Cr (refs 10, 11) provide
substantial evidence for the onset of a sizable energy gap at N = 32 This
result was recently confirmed by high-precision mass on
neutron-rich Ca isotopes'. In the framework of tensor-force-driven
shell evolution®, the N = 32 subshell closure is a direct consequence of
the weakening of the attractive nucleon-nucleon interaction between
protons () and neutrons (v) in the nif7;> and vfs» single-particle orbitals
(SPOs) as the number of protons in the 7f;;; SPO is reduced and the

gnitude of the nfyp—vfs, energy gap i (Fig. la—c).

A question that has been asked frequently over recent years is
whether or not the onset of another subshell gap occurs in exotic

frame of reference have been corrected for Doppler shifts, and so the
transitions appear at the energies they would in the rest frame of the
nucleus. The most intense y-ray line in the **Ca spectrum, the peak at
2,043(19) keV (error, 1 5.d.) in Fig, 4a, is assigned as the transition from
the first 2 state (2;") to the 0" ground state. In addition, two weaker
transitions are located at 1,656(20) and, respectively, 1,184(24) keV.
Figure 4b shows a y-ray spectrum obtained with the condition of a
prompt coincidence (=10 ns) with the 2,043-keV y-ray, indicating
that the weaker transitions were emitted in decay sequences involving
the 2; — 07 ground-state transition. On the basis of the y-ray relative
intensities, the 1,656-keV transition is proposed to depopulate a level
at 3,699(28) keV, as presented in the “"Ca level scheme in the lower-
right section of Fig. 4a. Placement of the 1,184-keV transition in the
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N=34 subshell closure due to the effects of three body
forces driving the monopole part of the nuclear Hamiltonian
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Shell model calculations with effective interaction based on chiral
Effective field theory and three body forces (6. Hagen PRL 109 2012)



Evolution of the single-particle states around !325n
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Evolution of the single-particle states around !325n
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ONE OF THE CHALLENGES: ORIGIN OF THE
ELEMENTAL ABUNDANCES IN THE SOLAR SYSTEM

Stars are mostly made of

hydrogen and helium, mi

but each has a fairly i ~

unique pattern of other il dex=12+Log(X/Hydrogen)
elements

The abundance of
elements tells us about
the hystory of events prior
to the formation of our
Sun
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’N/F N, r-process nuclei: P — spss)

B-decay and isomer spectroscopy

exotic beams for science\
Istituto Nazionale
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ONE OF THE CHALLENGES: REFLECTION ASYMMETRIC
NUCLEI AND STATIC ELECTRIC DIPOLE MOMENT

The lopsided nuclei, described today (May 8)
in the journal Nature, could be good
candidates for researchers looking for new
types of physics beyond the reigning
explanation for the bits of matter that make
up the universe (called the Standard Model),
said study author Peter Butler, a physicist at
the University of Liverpool in the United
Kingdom.

The findings could help scientists search for
physics beyond the Standard model, said
Witold Nazarewicz. An electric dipole
moment would provide a way to test
extension theories to the Standard Model,
atomnic nucled such as supersymmetry, which could help
o e explain why there is more matter than
antimatter in the universe.
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ONE OF THE CHALLENGES: REFLECTION ASYMMETRIC
NUCLElI AND STATIC ELECTRIC DIPOLE MOMENT
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ONE OF THE CHALLENGES: RADIONUCLEI FOR MEDICINE

The chart of nuclides — nuclear medicine perspective
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LOIs at ISOL Facilities
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SPES Facility @ LNL
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A Cyclotron test at BEST Company site S
&FN (Otta wa ) O s i
Accelerator Cyclotron AVF 4 sectors
Type
Particle Protons (H- accelerated)
Energy Variable within 30-70 MeV

Max Current 750 pA (52 kW max beam
: Accelerated power)
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Cyclotron assembled and operated at 1MeV
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INFN : —
L/ P . exotic beams for science
in Ottawa next week
sone - ( machine Both cavities with
s - L e 62 kV voltage and
. 14 kW FWD RF
e power each.
e | Amplitude Stability
- | within £ 2.5*10°
1:00E07 d.
| .
lvoomg L venting pump down RF conditiq‘ming ‘ ''''' ':‘ “'"‘T
Succesful vacuum test: below 10”7 Torr
after 2hours pumping T -

Critical point: maximum current of 800 microA accelerated up to 1 MeV

If test is succesfull, the cyclotron will be dismounted and the transfer to
Italy will start.

Cyclotron at LNL: February 28, 2015
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SPES

Technical hlghllghts the production target

exotic beams for science

SPES DIRECT TARGET CONCEPT to operate with 8 kW
proton beam

(A. Andrighetto et al.)

*  Direct Target carefully designed to reach 103
fissions/s with 8 kW proton beam (thermo-
mechanical considerations);

* In beam test performed at iThemba lab (South
Africa) on May 2014;

*  Prototype under operation.

*  Fully developed front-end following ISOLDE

arget completely develd

design;

Target under
operation at
2000°C

35
F. Gramegna - 46th Zakopane Conference on Nuclear Physics 31/8- 7/9 2014



) Target Power test @ iThemba Lab

SPvSé
SmESET

exotic beams for science

Tdisk
SPES target in-beam power Proton beam .
test (SiC target) 66MeV 60 pA

Heater power compensated by

proton beam.

* Upto4 kW proton beam in
target.

*  Stable temperatures

*  Stable vacuum (3 10~
mbar)

Thanks to Rob, Lowry and all the
__ iThemba_Labs Cyclotron staff
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iThemba_Labs, May 17t, 2014
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o) High Resolution Mass Separator & Beam Cooler
INFN

Istituto Nazionale
di Fisica Nucleare

SP-S é
&-. ~mm—
exotic beams for science

L.Calabretta, M.Comunian,

Collaboration SPES — CENBG Bordeaux (SPIRAL2)
A.Russo, L.Bellan . .
High Resolution Mass Separator
* Scaled-up version of the separator designed by Cary Davids FLOTOF  XVERSA ¥} ATZ- ETES
for CARIBU' Argonne TT_E-:FI-S-:E. MNPUT I E-E-!I&'a'.\\l:\fe SPFES caribu ole-é-c
* Mass resolution: 1/40000 (eng. design: 1/25000) AM=2.5 10"

Beam Cooler to match the HRMS input

requirements
. 9
COOLBEAM experiment financed by INFN-CSN5, 2012->2015 Q\(\\\S\(’,
Collaboration: LNL-LNS, Mi bicocca
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High Resolution Mass Spectrometer

INFN-LNS
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o richiesta spettrometro magnetico di EXCIT 15/10/2014 1945

a fortuna graziano 7, giacomo cuttone

cc prete@Inlinfn.it Altre azioni -

Al Presidente del MAC INFM - dott. Graziano Fortuna

cc
Al direttore dei LMS -dott. Giacomo Cuttone

cc
Al responsabile del progetto speciale SPES - dott. Gianfranco Prete

Oggetto: richiesta spettrometro magnetico di EXCIT per SPES

Cari colleghi,

ISOL bunker

da parte del responsabile del progetto speciale SPES trasmetto la
richiesta di poter avere a disposizione presso i LNL per alcuni anni lo
spettrometro magnetico di EXCYT.

Tale strumentazione puo’ essere di grande utilitad come “"spettrometro di
primo giorno " per 1la selezione dei fasci del progetto SPES, Inoltre,
una struttura come quella di EXCYT puc’ essere vista come il primo
stadio di uno spettrometro ad altissima risoluzione, da utilizzarsi
nella fase di regime di SPES e da realizzarsi assieme ai LNS nell'ambito
di una collaborazione internazionale che comprende SPIRAL2 e Bordeaux.

Auspico che la richiesta possa essere accolta, naturalmente nel rispetto
della tempistica e della programmazione dei LNS; sarad un segno

ulteriore della fraterna e proficua collaborazione gia® in atto fra i due
laboratori.

1/200
mass

1TE3

cordiali saluti
gianni fiorentini
direttore LNL

w
o
0

m
N
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% ST ;

|N2P3
i i s

Optical design of the DESIR HRS

Teresa Kurtukian-Nieto CNRS-CENBG

CENBG/CNRS/IN2P3-Université de Bordeaux

ZoDEST

piral

Meeting SPES-CENBG, September 15th-16th 20014
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SPES sub-systems

1 Building and infrastructures with 2 ISOL bunkers for radioactive beam
and application area for radioisotopes and neutrons

Cyclotron 70 MeV protons with 2 independent exits
ISOL UCx target designed for 1013 f/s

G
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3 ]
Tunnel towarg

4 Beam transport with High Resolution Mass Separation CB, RFQ, ALF

5

Reacceleration with ALPI superconducting linac
(10A MeV A=130)

6 Radioprotection, safety & controls
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L/ sttuto Nazlonale exotic beams for science

di Fisica Nucleare

Collaboration with LPSC (Grenoble) for the SPES Charge Breeder

I: FH:—. E/:\i\%

The development of an Upgraded PHOENIX booster is Part of a MoU in the frame Grenesb.e

of the European Associated Laboratories (LEA-Colliga) with GANIL. et s RO

(In exchange: development of SPIRAL2 n-converter by INFN)

Project and construction by LPSC_Grenoble Mass Separator

|
e 2010 Preliminary measurements I
* 2011 Conceptual design and schedule definition :
|
|
|

e 2012 Design

2013 Agreement definition
* 2014 Construction

* 2015 Commissioning

—— 3 1 12—
1
)

Etracti —_— Central Injection
_x "alc t'°“ Soft iron e s electrode
insulator ‘k and 3 |
reeder
\ e / \ - HF blocker
3TELS
Injection
insulator + Source
Plasma and ” —|
Extraction B

Bz Gas valves
.

electrodes

Tunable Mechanical
chassis support

1+ Stable Source


http://www.ganil-spiral2.eu/
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’ N F N exotic beams fori:enié
(P
Physics de.?igfr]_‘f —— High power RF Coupler 200kW

TR 'LL{ s
A VAT

. Energy 5.7 = 727.3 [B=0.0395] KeV/A (A/q=7)
. Frequency 80 MHz

. Beam transmission >95%, low RMS longitudinal 0. 649 j
emittance at output: 0.15 ns*keV/u.

. Length 695 cm (7 modules) intervane voltage
63.8 — 85.8 kV

. RF power (four vanes) 100 kW.

. Mechanical design and realization, taking
advantage of IFMIF experience (LNL, INFN_Pd,
Bo, To).

E. Fagotti, A. Pisent

1+ Stable Source



74 QW-

Resonators in 19 cryostats, working @ 4.2 K

ALPI superconducting booster:
(immersed in a liquid He bath)




OUTPUT OF Fiducialization OF ALL
MAGNETS IN ALPI

System Specification:

E. Fagotti et al.

GIACOMO DE ANGELIS - WPCF2013
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The Upgraded Alpi post-accelerator

For stable beams

# At present

W~ With ALPTin SPES configuration "1~~~ B i it Sl

41.57m

11.7m

ALPI| Accelerator

Doz
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DIg

3018 H

w DEZ2

to:Exp.
Halls1& 2

~Je_  fromnew RFQ

138Ce26+

p.20

1

SPES

e— =}

exotic beams for science

For exotic beams

Low Beta=5 MV/m, Medium Beta=4.3
MV/m, High Beta=5.5 MV/m
Conservative value: 2 cavities off in the

calculation.

136B326+' SaKrig

& soRb17+
# 9IRbIT+

¢ PR

540

4+ BGels+

5.60

4 143Ce26+
+ B86Selst

5.80

gagels+ & 94KrlG+

4 73Cul2+
+ lilh
1345021+
+ 90v1a+
138Xe21+
4 136Te20+
138Xe20+% 1387e20+
988r14+

600 620 640 660 680  7.00
Alg

Reshape and improvement of
low beta cavities.

Added high beta cryostats to
improve the final energy.



) oge
w» | SPES Facility Layout % o ==
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SPES sub-systems

1 Building and infrastructures with 2 ISOL bunkers for radioactive beam
and application area for radioisotopes and neutrons

2 Cyclotron 70 MeV protons with 2 independent exits

3 ISOL UCx target designed for 1013 f/s e
Tunnel toward

4 Beam transport with High Resolution Mass Separation CB, RFQ; ALF

5

Reacceleration with ALPI superconducting linac
(10A MeV A=130)

6 Radioprotection, safety & controls
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Actual status

Already done:
Building: international bid completed, just works starting
Cyclotron: on construction by BEST (Canada)

ISOL target: prototype developed Er@mder operation in lab

Safety & control: authorizati he cyclotron operation
just obtained, a Quality a@ System under

implementation Q
To be done: \/
* Radioactiv \»/selection and transport partially FUNDED
* Charge breeder for increasing the charge state FUNDED

 RFQ for pre-acceleration FUNDED
e Upgrade of the ALPI superconductive Linac partially FUNDED
e General control system and safety partially FUNDED

Complete funding expected in three years. Total cost: 51 Meuro ”!




SPES general planning

2012 2013 2014 2015 2016 2017 2018 2019
Authorization to operate and safety UCx
S5microA
ISOL Target-lon Sources development
ISOL Targets construction and
installation
ISOL on-line commissioning
Building Construction SCETN raw building
project construction

Cyclotron Construction &
commissioning

RFQ development and Alpi up-grade

Design of RIB transport & selection
(HRMS, Charge Breeder, Beam Cooler)

Construction and Installation of RIBs
transfer lines , CB and spectrometers

Stepwise commissioning and first
exotic beam (2018), HRMS in 2019

Cyclotron
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Decay spectroscopy techniques to study
neutron-rich fission fragments at SPES

Krzysztof P. Rykaczewski, Robert Grzywacz, Carl J. Gross, Daniel W. Stracener, Yuan Liu
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6371, USA
in collaboration with
C. Mazzocchi, A. Korgul, M. Karny, K. Miernik, U. of Warsaw, Warsaw, Poland
W. Krolas, Institute of Nuclear Physics PAN, Krakow, Poland

MTAS = Modular Total VANDLE = Versatile Array of 3Hen = Helium-3 Neutron Detectors
Absorption Spectrometer Neutron Detectors for Low Energy Hybrid-3Hen = 3Hen + Clover Ge

The physics of neutron-rich fission fragments

nuclear structure evolution as N >> Z

spectroscopy near and above the neutron separation energy

rapid-neutron capture half-lives and beta-delayed neutron branchings

societal impact in better data for modeling neutron-rich environments such as nuclear reactors
more detailed understanding of the anti-neutrino spectra from reactors

Not riaccelerated radioactive nuclear beams



)
IN'N
L.t

Laboratori Nazionali di Legnar

To Prof. Giovanni Fiorentin

Director of LNL

Dear Gianni,

Let us first convey to you, on behalf of the AGATA Steering Committee (ASC) and AGATA
Collaboration Council (ACC), the message that the full scientific community around AGATA has
appreciated the interest of the LNL laboratory in the AGATA physics program and in particular in the
scientific potential of the AGATA detector in combination with the exotic radioactive ion beams of
the SPES facility. In view of the wide scientific program of AGATA at SPES, already envisaged by the
scientific community through the presentation of 15 LOIs, the AGATA Steering Committee has agreed
to install the AGATA detector at LNL-SPES for running an experimental campaign in the period 2019-
2020.

Therefore the AGATA Steering Committee has decided for a commitment of the detector until 2020
(GANIL 2017-2018, LNL 2019-2020).

Best Regards,

J. Nyberg (ACC Chair)

G. de Angelis (ASC Chair) and

AGATA @ SPES
2019-2020
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The FAZIA project
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