

16th ASRC International Workshop " Nuclear Fission and Structure of Exotic Nuclei "

Present and Future of Fission at n_TOF

Christina Weiss, CERN, Geneva/Switzerland

Present and Future of Fission at n_TOF

Outline

- The n_TOF Facility @ CERN
- n_TOF Parameters
- Fission Measurements in Phase 1 & 2
- n_TOF Phase 3 & Conclusions

THE n_TOF FACILITY @ CERN

CERN Accelerator Complex

CERN: European Organization for Nuclear Research (Geneva / Switzerland)

- Since 1954

The n_TOF Facility @ CERN

(*) C Rubbia et al., A High Resolution Spallation Driven Facility at the CERN-PS to measure Neutron Cross Sections in the Interval from 1 eV to 250 MeV, CERN/LHC/98-02(EET) 1998.

The n_TOF Collaboration

<u>The n_TOF Collaboration</u> 30 Research Institutions from Europe, Asia and USA. 16 PhD students

NUCLEAR ASTROPHYSICS: stellar nucleosynthesis

Neutron capture and (n,α) cross section of stable & unstable isotopes playing a role in the *s*- and *r*-processes (0.1-500 keV).

NUCLEAR TECHNOLOGIES: ADS, Gen-IV and Th/U fuel cycle

Neutron capture and fission cross sections of Actinides in the thermal (meV), epithermal (eV-keV) and fast (MeV) energy regions.

BASIC NUCLEAR PHYSICS: levels densities, γ -ray strength functions and ang. Distributions

Time-of-Flight measurements with dedicated detectors providing valuable information on basic nuclear physics quantities.

The Pb Spallation Target

- Approx. 400 FAST (MeV-GeV) neutrons/proton (20 GeV/c) are generated @ target.
- They are slowed-down (MODERATED) in 5 cm of water+¹⁰B-water: meV to GeV.
- A fraction reaches the experimental halls:
 - 1. EAR1: after 185 meters of vacuum.
 - 2. EAR2: after 18.5 meters of vacuum.

Neutrons to EAR1

The n_TOF Facility (2014)

Two experimental areas (EAR):

- Horizontal flight path: EAR1 at 182.5 m
- Vertical flight path: EAR2 at 18.2 m

EAR1

Both beam lines have:

- 1st collimator: halo cleaning + first beam shaping.
- Filter station.
- Sweeping magnet.
- 2nd collimator: beam shaping.

Main Features of n_TOF

- Extremely high instantaneous neutron flux:
 - 1. EAR1: 10⁵ n/cm²/pulse
 - 2. EAR2: 10⁶ n/cm²/pulse
- Unique facility for measurements on radioactive isotopes (maximize S/N)
 - Branch point isotopes (astrophysics)
 - Actinides (nuclear technology)
- Large energy range:
 - 1. EAR1: 25 meV<E_n<1 GeV \rightarrow measure fission up to 1 GeV
 - 2. EAR2: 25 meV<E_n<300 MeV
- Low repetition rate (<0.8 Hz) \rightarrow no wrap-around
- High resolution in energy:
 - 1. EAR1 $\Delta E/E=10^{-4} \rightarrow$ study resonances
 - 2. EAR2 $\Delta E/E=10^{-3}$

Class-A Laboratory

n_TOF PARAMETERS

10⁻⁷

 10^{-6}

 10^{-5}

 10^{8}

 10^{7}

 10^{6}

 10^{5}

 10^{4}

 10^{3}

 10^{2}

 10^{1}

dn / dln(t) / cm² / 7e12 ppp

n_TOF Beam: TOF - E_n

Neutrons over wide E_n range. ۲

- Photons: ٠
 - γ -flash: photons from spallation. 1.

Arrival time of Photons and Neutrons in EAR1

 $10^8 \ 10^7 \ 10^6 \ 10^5 \ 10^4 \ 10^3 \ 10^2 \ 10^1 \ 10^0 \ 10^{-1} \ 10^{-2} \ [eV]$

 10^{-3}

 10^{-4}

t [s]

Neutrons

Photons, $E_{\gamma} > 1 \text{ MeV}$

 10^{-2}

 10^{-1}

 10^{0}

2. In-beam γ : photons from moderation of neutrons.

Neutron Fluence

- High-gain spallation source + moderation:
 - -> high instantaneous flux.
 - -> large energy range.

Results from FLUKA simulations:

Energy Interval	EAR2 n / cm² / pulse	EAR1 n / cm² / pulse	Gain EAR2 / EAR1
0.02 – 10 eV	1.64e6	1.07e5	15.4
10 eV – 1 keV	1.07e6	3.98e4	26.8
1 keV – 100 keV	1.36e6	5.02e4	27.0
0.1 – 10 MeV	3.00e6	1.76e5	17.1
10 – 200 MeV	4.78e5	4.15e4	11.5
Total range	7.54e6	4.14e5	18.2

EAR2 especially suited for measurements on radioactive samples, as the neutron rate is a factor ~ 250 higher than in EAR1 => Better signal to background ratio for radioactive samples.

Beam Profile

- EAR1:
- 1. Capture collimator:

ø 18 mm, straight geometry of collimator, Gaussian beam.

1. Fission collimator:

ø 80 mm, straight geometry of collimator, Gaussian beam.

- EAR2: Collimators under study. Most likely 2 conical configurations:
- 1. Small collimator with ø 20 mm at the exit:

-> same number of neutrons in 10 mm diameter, as the total fission beam in EAR1.

1. Big collimator with ø 80 mm: for very small cross-sections and thin samples.

Resolution Function

- Neutron energy resolution dictated by:
 - Proton beam width.
 - Spallation process in extended Pb target.
 - Moderation process.
 - Flight path.

Neutron Energy	EAR2: L ₀ = 18.9 m	EAR1: L _o = 187.5 m
	ΔE/E	ΔE/I
1 eV	4.3e-3	3.0e-4
1 keV	8.5e-3	5.4e-4
1 MeV	4.1e-2	3.6e-3

16

FISSION @ n_TOF: PHASE 1 & 2

Fission Measurements @ n_TOF

Detector	Fission Measurements	Reference
FIC	233U: σ (thermal – 1 MeV) σ (0.5 – 20 MeV)	M. Calviani, Phys.Rev.C 80 (2009) 044604 F. Belloni, Eur. Phys. J. A 47 (2011) 2
	236U: σ (up to 2 MeV)	R. Sarmento, Phys. Rev. C 84 (2011) 044618
	243Am: σ (0.5 – 20 MeV)	F. Belloni, Eur. Phys. J. A 47 (2011) 160
	245Cm: σ (thermal – 1 MeV)	M. Calviani, Phys. Rev. C 85 (2012) 034616
	241Am: σ (0.5 - 20 MeV)	F. Belloni, Eur. Phys. J. A 49 (2013) 2
PPAC	234U/237Np: σ (1eV - 1 GeV)	C. Paradela, Phys. Rev. C 82 (2010) 034601
	209Bi/natPb: σ (thr – 1 GeV)	D. Tarrio, Phys. Rev. C 83 (2011) 044620
	232Th: FFAD (thr – 3 MeV)	D. Tarrio, NIMA 743 (2014) 79-85
	233U: σ	L. Tassan-Got – to be published
	235U & 238 U: $\sigma + FFAD$	Analysis pending
MGAS	235U: fission tagging	C. Guerrero, Eur. Phys. J. A 48 (2012) 29
	240,242Pu	A. Tsinganis – work ongoing

Measuring Fission up to 1 GeV

19

1000

Fursov (RUSFEI 91)

△ Manabe (JPNTOH 88)

10

E_(MeV)

Meadows (USAANL 78)
Behrens (USALRL 77)

100

C. Paradela et al., *Neutron-induced fission cross section of* ²³⁴U and ²³⁷Np measured at the CERN Neutron Time-of-Flight (n_TOF) facility, Phys. Rev. C 82, 034601 (2010)

Measurement with parallel plate avalanche counters (PPAC):

- Highly transparent detector: less than 1% neutron fluence loss with assembly of 10 PPACs.
- Coincidence measurement -> excellent background rejection.
- Fast anode signal (9 ns FWHM): measurement up to 1 GeV possible.

Measurement at n_TOF:

- High E_n-resolution: Measurement of subthreshold resonances.
- Wide E_n spectrum: Measurement of crosssection up to 1 GeV.

0.5

0.1

Angular Distribution of FF

D. Tarrio et al., *Measurement of the angular distribution of fission fragments using a PPAC assembly at CERN n_TOF*, NIMA 743, 79-85 (2014)

Measurement with PPACs:

- ➤ Detectors tilted by 45°-> FFAD measurement possible for 0 < cosΘ < 1. Continuous angular range with a resolution of +/- 4.5°.
- Segmented Cathodes (100 strips 1.9 mm wide with 100 µm spacing in between), perpendicular to each other: Information on angular distribution of fission fragments is obtained.

Measurement at n_TOF:

Study of energy dependence with high resolution.

Measuring high Activity Samples

A. Tsinganis et al., *Measurement of the 242Pu(n,f) Cross* Section at the CERN n TOF Facility, Nuclear Data Conference, New York 2013

Measurement with **MICRO-ME**sh **GA**seous **S**tructure (µMGAS) detectors:

Fast, Low background, radiation hard.

Measurement at n_TOF:

High instantaneous flux -> Measurement of high activity samples possible.

²⁴⁰ Pu		²⁴² Pu	
²⁴⁰ Pu	99.8915%	²⁴² Pu	99.96518%
Mass	3.1 mg	Mass	3.6 mg
Activity	25.7 MBq	Activity	0.53 MBq
Surface density		0.10 – 0.13 mg/cm ²	

Fission in Anti-Coincidence

C. Guerrero et al., Simultaneous *measurement of neutroninduced capture and fission reactions at CERN,* Eur. Phys. J. A 48:29 (2012)

Measurement with µMGAS in combination with Total Absorption Calorimeter (TAC):

Capture and fission can be measured at the same time.

Fission tagging: TAC+MGAS

n_TOF PHASE 3

Proposals and Outlook

The experimental areas will be ready for new measurements after the commissioning phase 2014:

- EAR1: Physics start September 2014.
- ➢ EAR2: Physics start November 2014.

Phase 3 period: 2014 – 2018 (next long shutdown at CERN).

Fission measurements planned for Phase 3:

- 233U fission tagging.
- 235U with STEFF detector, first measurement of γ-rays in coincidence with FF mass distribution and atomic number Z at n_TOF.
- > 231Pa with PPAC.
- > 244Cm fission tagging.
- More to come!

Conclusions

- The n_TOF facility at CERN offers the possibility to measure neutron-induced fission over a wide neutron energy range.
- The fission cross-sections of 14 different isotopes were measured so far at n_TOF during Phase 1 & 2.
- Two experimental facilities will be operational in parallel from July 2014 onwards:
 - > 200 m flight path for high resolution measurements.
 - > 20 m flight path for:
 - 1. Low mass samples.
 - 2. Low cross-sections.
 - 3. High activity radioactive samples.

THANK YOU FOR YOUR ATTENTION!