

CENTRE D'ETUDE DE L'ENERGIE NUCLEAIRE

The MYRRHA ADS project

Paul Schuurmans for the MYRRHA Team

High Level Nuclear Waste

 $n + U^{235} \Rightarrow 2 FP + 2 \text{ or } 3 n + 200 MeV$

(4 eV for combustion of C)

Motivation for Transmutation

Fission of waste

• Fast neutron spectrum (>0.75MeV)

•With MA fuel

•MA reactor more difficult to control

•Maximum for critical fast spectrum power reactor : 1-1.5%

1E-5 1E-4 0.001 0.01 0.1 1 10 100 1000 1E+4 1E+5 1E+6 1E+7 E(eV)

⇒ Fast spectrum Sub-critical system

Copyright © 2013 SCK•CEN

Objectives

SCK•CEN

© SCK•CEN

MYRRHA: a multipurpose irradiation facility at SCK-CEN

MYRRHA - Accelerator Driven System

Accelerator

(600 MeV - 4 mA proton)

Reactor

- Subcritical or Critical modes
- 65 to 100 MWth

MYRRHA part of ESNII European Sustainable Nuclear Industrial Initiative

MYRRHA design parameters

General design parameters	MYRRHA-FASTEF rev. 1.4	
Maximum core power	100 MW _{th}	
Reactor power	110 MW _{th}	
Temperatures		
Cold shutdown state	200 °C	
Maximum core inlet temperature	270 °C	
Maximum mean core ΔT	140 °C	
Average core outlet temperature	410 °C	
Maximum hot plenum temperature	350 °C	
Spallation target		
Туре	Loopless spallation window	
Number of core positions	One core position	
Material	T91	
Window Operating temperature	450 °C	
Accelerator beam energy	600 MeV	
Accelerator beam current	4 mA max	

MYRRHA project schedule

MYRRHA Accelerator Challenge

fundamental parameters (ADS)				
particle	р			
beam energy	600 MeV			
beam current	4 mA			
mode!	CW			
MTBF challenge!	> 250 h			

failure = beam trip > 3 s

implementation				
superconducting linac				
frequency	176.1 / 352.2 / 704.4 MHz			
reliability = redundancy	double injector			
	"fault tolerant" scheme			

Redundancy & modularity Fault tolerant design

parallel scheme

serial scheme: IF

MYRRHA linac

INJECTOR BUILDING

- Reactor Vessel
- Reactor Cover
- Core Support Structure
 - Core Barrel
 - Core Support Plate
 - Jacket
- Core
 - Reflector Assemblies
 - Dummy Assemblies
 - Fuel Assemblies
- Spallation Target Assembly and Beam Line
- Above Core Structure
 - Core Plug
 - Multifunctional Channels
 - Core Restraint System
- Control Rods, Safety Rods, Mo-99 production units
- Primary Heat Exchangers
- Primary Pumps
- Si-doping Facility
- Diaphragm
 - IVFS
- IVFHS
 - IVFHM

Reactor layout

Spallation Target Assembly

- Produces about 10¹⁷ neutrons/s at the reactor mid-plane to feed subcritical core @ keff=0.95
- Fits into a central hole in core
- Accepts megawatt proton beam
- Material challenges
- Dimensions
 - Length: about 12.5 m
 - Diameter: about 105 mm

Spallation Target Assembly

0 0.02 0.04

radius [m]

0.06 0.08 0.1

0.5

-0.1 -0.08

-0.06 -0.04 -0.02

- Rotating beam σ 15 mm sweep 25 mm
- Limited heat deposition at stagnation point
- Multi tube concept
 - 3 Concentric inlet tubes

Core and Fuel Assemblies

Core and Fuel Assemblies

- 151 positions
- 37 multifunctional plugs

Material Irradiation Performances for FR Reactors Critical@100 MW

	IPS in Chan [0 0 0]		IPS in Chan [2 0 0]	
Sample n°	dpa/EFPY	Φ_{tot}	dpa/EFPY	Φ_{tot}
8	18.1	2.38E+15	16.2	2.12E+15
7	23.0	2.85E+15	20.7	2.54E+15
6	25.9	3.19E+15	23.3	2.85E+15
5	27.5	3.37E+15	24.5	3.02E+15
4	27.2	3.39E+15	24.5	3.03E+15
3	25.7	3.23E+15	22.9	2.89E+15
2	22.3	2.92E+15	19.9	2.62E+15
1	17.3	2.50E+15	15.5	2.23E+15

Irradiation capabilities in the spallation target subassembly (below the target)

MYRRHA-IMIFF for fusion material

- In critical mode (fast reactor), appmHe/dpa ~ 0.2 to 1
 not optimal for fusion materials experiments
- In sub-critical mode (ADS), high appmHe/dpa ratio is reached, specially in the region of the window of spallation source
- Volume of 1 It with appmHe/dpa ~ 12 close to spallation target

MYRRHA for fusion irradiations

Estimated damage induced in DEMO and proposed irradiation conditions in IFMIF and MYRRHA-IMIFF

Radioisotope (Mo-99) production capability Sub-critical @ 73 MW

Cooling systems

Cooling systems

Integration into building

Integration into building

MYRRHA R&D in International context : Euratom FP projects

Recent evolutions

Licensing

- Guidances on accidental aircraft crash and seismic hazard issued by FANC
- Content of the focus points fully described
- Vol 1 & 2 of DOPF sent by SCK•CEN to FANC

Primary system

- Review of RVACS
- Introduction of severe accident cooling system
- Release of version 1.6 in January 2014
- Balance of Plant
 - FEED contract awarded to the consortium AREVA, ANSALDO, Empresarios Agrupados

MYRRHA: EXPERIMENTAL ACCELERATOR DRIVEN SYSTEM

A DE AL A DE CALLOR AN

11111

11-

A pan-European, innovative and unique facility