FISSION STUDY USING SAMURAI SPECTROMETER AT RIKEN

Masami Sako @ Kyoto Univ. (RIKEN) "Nuclear Fission and Structure of Exotic Nuclei" JAEA, Tokai, Japan 18-20 March 2014

Collaborators

Name
Andreyev, Andrei
Aumann, Thomas
Gernhäuser, Roman
Henning, Walter
Kentaro, Hirose
Kobayashi, Toshio
Le Bleis, Tudi
Matsuda, Yohei
Mitsuoka, Shin-ichi
Motobayashi, Tohru
Muecher, Dennis
Nishinaka,Ishiro
Nishio, Katsuhisa
Orlandi, Riccardo
Panin, Valerii
Paschalis, Stefano
Reichert, Sebastian
Sako, Masami
Sasano, Masaki
Uesaka, Tomohiro
Zenihiro, Juzo
Dozono, Masanori
Yoneda, Ken-ichiro
Sato, Hiromoi
Shimizu, Yohei
Otsu, Hideaki
Nakamura, Takashi
Kondo, Yohsuke
Kubota, Yuki
Kubo, Toshiyuki
Inabe, Naohito
Suzuki, Hiroshi
Fukuda, Naoki
Kameda, Daisuke
Takeda, Hiroyuki

Institution
U. York / ASRC JAEA
TU Darmstadt
TU Munich
TU Munich/ ANL
JAEA
Tohoku U.
TU Munich
Kyoto U.
ASRC JAEA
RIKEN Nishina Center
TU Munich
ASRC JAEA
ASRC JAEA
ASRC JAEA (Nov.2013)
TU Darmstadt
TU Darmstadt
TU Munich
Kyoto U.
RIKEN Nishina Center
Tokyo Institute of Technology
Tokyo Institute of Technology
CNS, University of Tokyo / RIKEN
RIKEN Nishina Center

Contents

- Motivation : potential surface study with fission
- New and powerful method: (p,2p) (p,pn) (p,n)reaction with SAMURAI
- Uniqueness of our project Current status of the project test experiment
- Summary

Potential surface : ¹⁸⁰Hg

- Beta-delayed fission from ¹⁸⁰TI
- The fission fragment distribution is asymmetric mass pattern
- Ex < Qb~10 MeV -> symmetry fission can not be ocured

A. Andreyev, .., Nishio, .., Ichikawa, Iwamoto, .. *et al.*, Phys. Rev. Lett. **105**, 252502(2010).

fission fragment distribution as a function of Ex

Sym

Fission probability as a function of Ex

Recent Experimental Data

SAMURAI experiment

- New and powerful method with SAMURAI
 - Inverse kinematics with (p,2p), (p,pn), (p,n) reaction
 -> decide the excitation energy by missing mass spectroscopy
 - large acceptance and good resolution
 -> charge(Z) and mass(A) distribution of fission fragment

Our Experiment Outline

- experiment @ RIBF + BigRIPS + SAMURAI magnet
 beam : neutron-rich heavy RI beam @ ~300 AMeV
- method : inverse kinematics with (p,2p)
- measurement : Excitation energy <- missing mass spectroscopy

 -> fission barrier
 -> charge(Z) and mass(A) distribution of fission fragments

Inverse kinematics with (p,2p) reaction

- proton knockout (p,2p) reaction
 - cross section : large
 - high momentum transfer
 - 2 proton measurement -> low background
- We can decide excitation energy directly with missing mass spectroscopy

RIBF and BigRIPS and SAMURAI magnet

SAMURAI (<u>Superconducting</u> <u>Analyser</u> for <u>MU</u>Iti-particle from <u>RA</u>dio <u>I</u>sotope beam) magnet

Test Experiment

- Beam : ²³⁸U @ ~300 AMeV, ~10⁴ pps
- Target : liquid H
- Purpose
 - 2 proton trigger
 - Experimental challenge : detector operation
 Z of beam =92, minimum Z of fragment ~ 30
 - 2 fission fragments measurement and charge(Z) and mass(A) separation
- Beam Time
 - 1 day @ 3/31 4/1
- There is no resolution for excitation energy

Charge(Z) and Mass(A) can be separated by $B\rho \angle E$ -ToF(E)

Target Chamber and proton counter

• 2p trigger : multiplicity =2

UP and DOWN counters or LEFT and RIGHT counters

ICF, hodoscope and TED

- ICF : multilayer Ion Chamber for PID of flagment -> Z
 - active area (80cm \times 40cm) is divided to 4parts
 - charge resolution $\sigma_z \doteq 0.17$ between Z=8 and 36 @250 AMeV
- hodoscope : ToF counter -> Q/A
 - consist of 7bars(10cm×45cm×5mmt) with double side PMTs
 - time resolution $\sigma_t \doteq 2 \sim 300 \text{ ps}$
 - we can use fission trigger : multiplicity=2
- TED : total energy counter -> A
 - consist of 32 pure CsI crystal(10cm \times 10cm, 8 \times 4) with PMTs
 - mass resolution $\sigma_A \doteq 0.15$ up to mass=80 @250 AMeV

16th ASRC Interna

SAMURAI and fragment counters

Histogram of Simulation

- The magnetic setting and counter setting for test Experiment was decided with Geant4
 - -> Almost of all fission fragments can enter the counters!

ICF is divided to 4 parts

-> fission fragments can be detected

Exp.) Histogram of Simulation

Exp.) Histogram of Simulation

Development for Next Experiment

- New Detector 1
 - Segmented Ion Chamber
 - Sasano-san@RIKEN got the RIKEN internal fund for this counter
 - I will develop this counter !

- New Detector 2
 - Hodoscope which has good time resolution and thin plastic (vertical and horizontal bar)
- 2 proton Detector
 - Drift Chamber(position and angle) and Nal(energy)
 - Already Existed
- Ge-counter of in-flyght γ emission for particle tagging.

Next Experiment

Beam : ²¹⁰Bi (300 pps)
 ²¹³Po (270 pps)
 ²¹⁹At (130 pps)
 -> Total Beam rate ~ 4*10³ pps by LISE++

- Target : Solid H
- Estimation
 - N=1.1 x 10⁷ fragment events per day for 218 Po
 - (p,2p) cross section ~ 100 ub/MeV at 1g/cm² H₂ target ->5*10² events/day•MeV

Summary

- Our goal of fission experiment
 - charge and mass distribution and fission probability as a function of excitation energy
- New and powerful method at SAMURAI with (p,2p)
- Current status of our project
- Test experiment will be start
- New detector development
- Next experiment

Thank you