March 19, 2014 16th ASRC International Workshop "Nuclear Fission and Structure of Exotic Nuclei"

Transmutation of Nuclear Wastes by Accelerator Driven System (ADS)

Hiroyuki Oigawa

Nuclear Science and Engineering Directorate (J-PARC Center)

Japan Atomic Energy Agency

Background

JAEA

Concern to radioactive waste management has been increasing in Japan.

- → Transmutation technology is drawing the attention from public, media and politicians.
- JAEA has been studying this technology for more than 20 years since the former institutes (JAERI and PNC/JNC).

The Ministry of Education, Culture, Sports Science and Technology (MEXT) in Japan has launched a <u>Working Party to review Partitioning and</u> <u>Transmutation Technology</u> in August, 2013, and issued an interim report in November, 2013.

Major Long-lived Nuclides in Spent Fuel

S	
Ð	
σ	
-	
	•
÷	
C	
Ā	

JAEA

Trans-uranic elements (TRU)

actinides (MA)

Minor

Cm-244

18.1

	Nuclide	Half-life (year)	coefficient (µSv/kBq)	Mass (per 1tHM)	<u> </u>
	U-235	0.7B	47	10kg	Ë
	U-238	4.5B	45	930kg	cts
	Nuclide	Half-life (year)	Dose coefficient (µSv/kBq)	Mass (per 1tHM)	produc
	Pu-238	87.7	230	0.3kg	<u>o</u>
	Pu-239	24k	250	6kg	SS
	Pu-240	6.6k	250	3kg	ш
	Pu-241	14.3	4.8	1kg	
ſ	Nuclide	Half-life (year)	Dose coefficient (µSv/kBq)	Mass (per 1tHM)	C
ļ	Np-237	2.14M	110	0.6kg	
	Am-241	432	200	0.4kg	
	Am-243	7.4k	200	0.2kg	

120

60g

Se-790.3M2.9Sr-9028.828Zr-931.53M1.1Tc-990.21M0.64Dd 1076.5M0.027	
Sr-9028.828Zr-931.53M1.1Tc-990.21M0.64Dd 1076.5M0.027	6g
Zr-931.53M1.1Tc-990.21M0.64Dd 1076.5M0.027	0.6kg
Tc-99 0.21M 0.64	1kg
	1kg
Pu-107 6.5W 0.037	0.3kg
Sn-126 0.1M 4.7	30g
I-129 15.7M 110	0.2kg
Cs-135 2.3M 2.0	0.5kg
Cs-137 30.1 13	1.5kg

Dose Coefficient:

Committed dose (Sv) per unit intake (Bq), indicating the magnitude of influence of radioactivity to human body. α -activity is more influential than β , γ -activity.

Partitioning and Transmutation (P&T)

Reduction of Radiological Toxicity by P&T

JAEA

Radiological Toxicity: Amount of radioactivity weighted by dose coefficient of each nuclide.

- Normalized by 1t of spent fuel.
- 9t of natural uranium (NU) is raw material of 1t of low-enriched uranium including daughter nuclides.

Time period to decay below the NU level:
Spent fuel 100,000y
High-level waste 5,000y
↓
MA transmutation 300y

Compact Disposal by Coupling with Long-term Storage

How to Transmute MA and LLFP

Cross Sections of Neutron-induced Reaction : Am-241

Two Types of Fuel Cycles for Partitioning and Transmutation Technology

Accelerator Driven System (ADS) for MA Transmutation

ADS Proposed by JAEA

- Proton beam : 1.5GeV
- Spallation target : Pb-Bi
- Coolant : Pb-Bi

JAEA

- Max. k_{eff} = 0.97
- Thermal output : 800MWt
- MA initial inventory : 2.5t
- Fuel composition : (MA +Pu)Nitride + ZrN
- Transmutation rate : 10%MA / Year
- 600EFPD, 1 batch

Conceptual view of 800 MWth LBE-cooled ADS

Components of Double-strata Fuel Cycle Concept

Technical Issues for ADS

JAEA

Development of Super-conducting LINAC

JAEA

- Cryomodule was designed to accept 927MHz RF wave and to be suitable for acceleration of 424MeV proton.
- Cool-down tests of prototype cryomodule was successfully carried out at 4.2 and 2.1K.

Superconducting cavity

Cryomodule

Reliability of Accelerator

JAEA

Number of beam trips per year (7,200 hours) 10^{5} Acceptable trip rate Beam trip rate (times/year) 10^{4} 1/3 10^{3} 1/10 10^{2} 10Estimation from experiences 0-10s 10s – 5min. >5min.

- We are comparing the trip rate estimated from data of existing accelerators and the maximum acceptable trips to keep the integrity of the ADS components.
- Short beam trip (<10s) can meet the cliteria.</p>
- Longer beam trip should be decreased by:
 - Reducing the frequency and

LANSCE

J-PARC

+KEKB

Reducing the beam trip duration

Design of Beam Window

Temperature at the outer surface of the window can be less than 500°C.

- Buckling failure can be avoided by a factor of safety (FS)=3.
- ◆ The life time of the beam window should be evaluated from viewpoints of corrosion and irradiation. → <u>necessity of irradiation data base.</u>

Mock-up Experiments for Beam Window Thermal-hydraulics

International Program for LBE Target Demonstration : MEGAPIE JAEA An LBE target was installed in SINQ of PSI, Switzerland. **Target** Participants: Switzerland, France, Germany, Belgium, Italy, Japan, US, Korea. Upper shield 4-month operation with 700kW (1.2mA X 590MeV) was successfully carried out. PIE is now being conducted in. Heat exchanger. Main flow pump Bypass flow pump ← Dummy specimen cut from mock-up target Main flow guide tube. LBE flow SINQ: Neutron source facility Bypass flow guide tube D₂O-cooled Beam window 575MeV p- cyclotron vessel Proton beam

Accuracy of Neutronics Design

JAEA

Benchmark calculation for 800MWt ADS for BOC and EOC.

(Left: Comparison between JENDL-4.0 and JENDL-3.3, Right: Nuclide-wise contribution for differences in k-eff)

■ There is 2% difference in k-eff between JENDL-4.0 and JENDL-3.2, which is too large to design ADS. → <u>necessity of integral validation of nuclear data</u>

Japan Proton Accelerator Research Complex: J-PARC

Plan of Transmutation Experimental Facility (TEF) as Phase-II of J-PARC

Transmutation Physics Experimental Facility: TEF-P

Purpose: To investigate physics properties of subcritical reactor with low power, and to accumulate operation experiences of ADS. Licensing: Nuclear reactor: (Critical assembly) Proton beam: 400MeV-10W Thermal power: <500W

ADS Target Test Facility : TEF-T

 Purpose: To research and develop a spallation target and related materials with highpower proton beam.
 Licensing: Particle accelerator
 Proton beam: 400MeV-250kW
 Target: Lead-Bismuth Eutectic (LBE, Pb-Bi)

Pb-Bi Target

Critical Assembly

JAEA

Multi-purpose Irradiation Area

10u

Preliminary Schedule of TEF

JAEA

- The construction of Beam line and TEF-T will be started in 2015 and the operation will be started in 2017.
- To start the construction of TEF-P in 2017, just after the completion of TEF-T, a few years of licensing activities should be started in 2015.

Working Party to Review Partitioning and Transmutation Technology in Japan

- The Ministry of Education, Culture, Sports Science and Technology (MEXT) in Japan has launched a Working Party to review Partitioning and Transmutation Technology in August, 2013.
- > An interim report was issued in November, 2013.

Key Descriptions:

(JAEA)

- To reduce the burden of HLW management, it is expected that flexibility in future political decision is extended by showing possibilities of new concepts of back-end with high social receptivity.
- The ADS Target Test Facility (TEF-T) is being proposed under J-PARC to verify the feasibility of the beam window. It is appropriate to shift the R&D of the facility to the next stage.

The Transmutation Physics Experimental Facility (TEF-P) is being proposed under J-PARC to overcome difficulties in reactor physics issues such as for a subcritical core and an MA-loaded one. Since this facility is proposed as a nuclear reactor, the safety review by the new regulation is to be applied. With taking care of this point, it is appropriate to shift the R&D of the facility to the next stage.

For MYRRHA Program, it is appropriate to proceed with negotiation about JAEA's participation at a reasonable level and mutual collaboration with Belgium and other relevant countries.

Progress of the development should be checked according to its stage.

Concluding Remarks

JAEA

- ADS is a dedicated system for effective transmutation of MA.
- Fission reactions are necessary for MA transmutation, but nuclear data including FP yield are insufficient presently.
- J-PARC Transmutation Experimental Facility (TEF) is waiting for approval of construction from the Government.
 - TEF will consist of two facilities: TEF-T for LBE target development and TEF-P for physics experiments for science and technology of transmutation.
 - TEF-T can accept multi-purpose uses of a 400MeV proton beam and spallation neutrons.
- International and interdisciplinary collaboration is essential for this technology.