

DE LA RECHERCHE À L'INDUSTRIE

SOFIA Fission yields measurement at GSI

Julie-Fiona MARTIN Supervisor: Julien TAIEB

CEA, DAM, DIF F-91297 Arpajon, France

16th ASRC International Workshop 18-20 March 2014

Fission studies

Available data

- Mass yields with good resolution
- Elemental yields
- Isotopic yields : little data in light fragments, even less for heavier fragments

Fission yields, why?

- post-Fukushima accident : residual heat calculation
- Impact of N- and Z- shells on fission partition poorly understood

- For the very **first** time, **fully** and **simultaneously** identify **both** fission fragments
- Measure also the **TKE**, as a function of asymetry
- For approx. 80 fissionning systems ranging from Hg (Z = 80) to Np (Z = 93) half of them measured for the 1st time

DE LA RECHERCHE À L'INDUSTRIE

STUDIES ON FISSION WITH ALADIN

- At GSI, Darmstadt, Germany
- Produce a **secondary beam** of fissionable nuclei
- Induce its fission through EM excitation
- Identify **both fragments** with a high resolution recoil spectrometer

Investigate the (low-energy) fission process

16th ASRC Workshop - March 2014

Actinides : High statistics for applications

- U, Np
- 1.5 days

Pre-actinides and lighter actinides : browse the nuclide chart

• Lower statistics, a few hours

Actinides : High statistics for applications

- U, Np
- 1.5 days

Pre-actinides and lighter actinides : browse the nuclide chart

• Lower statistics, a few hours

- Pission fragments Set-up Electromagnetic fission
- Results : actinides
 Fission modes
 Elemental Yields
 Isobaric and isotonic yield
 Isotopic yields
 Neutron multiplicity
 TKE

- 2 Fission fragments
 - Set-up Electromagnetic fission

3 Results : actinides

- ²³⁸U accelerated up to 1A.GeV
- Fragmentation reaction
- Secondary beam of actinide or preactinide Selected through the FRagment Separator -FRS
- Fission of secondary beam ions SOFIA around the ALADIN magnet in Cave-C

$$\begin{cases} B \\ \rho \\ Z \\ \gamma v \end{cases} \left(B \rho, Z, \gamma v \right) \to A$$

Pission fragments Set-up Electromagnetic fission

3 Results : actinides

- ²³⁸U accelerated up to 1A.GeV
- Fragmentation reaction
- Secondary beam of actinide or preactinide Selected through the FRagment Separator -FRS
- Fission of secondary beam ions SOFIA around the ALADIN magnet in Cave-C

Pission fragments Set-up Electromagnetic fissio

3 Results : actinides

Fission studies in Cave C

- All detectors developed by the SOFIA collaboration
- ΔE , $B\rho$, ToF technique applied to both fragments

Active Target Fission

16th ASRC Workshop - March 2014

J.-F. Martin

Active Target Fission Twin-MUSIC Charges $\sigma_{DE} = 0.4$ %

16th ASRC Workshop - March 2014

J.-F. Martin

Active Target Fission Twin-MUSIC Charges $\sigma_{DE} = 0.4$ % MWPCs Positions $\sigma_x = 85 \ \mu m$

Active Target Fission Twin-MUSIC Charges $\sigma_{DE} = 0.4$ % MWPCs Positions $\sigma_x = 85 \ \mu m$ ToF Velocity $\sigma_t = 17 \ ps$

Active Target	Fission	
Twin-MUSIC	Charges	Ζ
MWPCs	Positions	ρ
ToF	Velocity	γv
ALADIN	Dipole	В

$$(B\rho, Z, \gamma v) \rightarrow A$$

Pission fragments Set-up Electromagnetic fission

3 Results : actinides

EM fission

Excitation energy distribution after EM excitations. K.-H. Schmidt *et al.*, N.P.A., 2000

Same as photofission

 $(< E^* >= 12 MeV \Leftrightarrow 7 MeV \text{ neutron})$

 $^{238}Np(EM, f) \approx \ ^{237}Np(n_{7\ MeV}, f)$

- 2 Fission fragments Set-up Electromagnetic fissior
- Results : actinides
 Fission modes
 Elemental Yields
 Isobaric and isotonic yield
 Isotopic yields
 Neutron multiplicity
 TKE

2 Fission fragments Set-up Electromagnetic fissior

3 Results : actinides Fission modes

Fission modes interpretation

- Various path on PES correspond to fission modes
- For actinides, three main modes : SL, ST1, ST2
- Shell effects govern the modes
- TKE probes the scission configuration

Potential energy surface of $^{238}\textit{U}, \text{HFB}$ + Gogny D1S calculation, Court. N. Dubray (CEA)

16th ASRC Workshop - March 2014

J.-F. Martin

Fission modes

Fission modes for actinides

ST 1

- Asymmetric
- Sph. ¹³²₅₀Sn
- High TKE

²³⁸U

ST 2

• Very Asymmetric

• Medium TKE

SL

- Symmetric
- Def. FF
- Low TKE

²³⁸U

Scission configurations, HFB + Gogny D1S calculation Court. N. Dubray (CEA)

2 Fission fragments Set-up Electromagnetic fissior

3 Results : actinides

Fission modes

Elemental Yields

Isobaric and isotonic yield Isotopic yields Neutron multiplicity TKE

Z distribution

²³⁵U(em, f) - Fission fragments elemental distribution

- Complete disentanglement of charges
- Landmarks : even-odd staggering and Z = 54
- Width of gaussians 0.41 FWHM

16th ASRC Workshop - March 2014

- Statistical uncertainty : ranging from 0.3 % to 1.2%
- Fine even-odd staggering (incl. at symmetry)
- Sharp increase at Z = 50
- Strong contribution of Z = 54
- Asymmetric/symmetric ratio $\rightarrow E^* \approx 13 14 \text{ MeV}$

Z yield : systematics

Z vield

- Softer even-odd staggering
- Symmetric mode is populated
- Sharp increase at Z = 50
- Asymetric/symetric ratio $\rightarrow E^* \approx 13 14 \text{ MeV}$

Y_{ZFF} (A) - A↑ - A/Z gets closer to 132/50, a.k.a. ¹³²Sn - ST1 gets more favorable

Local even-odd staggering vs Z for ^{235}U

- Very low staggering at symmetry
- Staggering increases with asymmetry

16th ASRC Workshop - March 2014

Z yield : Sum Up

Z yield - Resolution

- No ambiguity on Z identification
- Measurement resolution is excellent
- High statistics lessens the uncertainty under 1%

Z yield - Physics

- No proton evaporation -> configuration at scission
- ST1 gains amplitude when the ratio A/Z comes closer to that of ¹³²Sn
- Even-odd staggering depends on the partition

2 Fission fragments Set-up Electromagnetic fission

3

Results : actinides

A distribution

Uncertainties

- Width of gaussians 0.58 0.75 u.m.a. FWHM
- Statistical uncertainty : 1.6 % to 3%

16th ASRC Workshop - March 2014

J.-F. Martin

N Distribution

• N = A - Z

• Landmarks : even-odd staggering and N = 82

16th ASRC Workshop - March 2014

N Distribution

- After prompt neutron evaporation
- Signature of closed shell N=82

$Y_{N_{FF}}(A)$

- Heavy fragment plays a leading role at scission

- Even-odd staggering (incl. n evap.)

Isotonic yields

- From Z and A yield measurements
- After prompt neutron evaporation
- Yet, enriched with information on shells and magicity
- Shell N = 82 figures prominently
- Even-odd staggering over the full range of fission fragments,
 - Scission configuration, combined with
 - Neutron evaporation

2 Fission fragments Set-up Electromagnetic fission

3

Results : actinides

²³⁵U (em, f) - Fission fragments isotopic distribution

16th ASRC Workshop - March 2014

Very high resolution Heavy fragments are more demanding

16th ASRC Workshop - March 2014

²³⁵U (em, f) - Isotopic yield - Transition from SL to ST1

Sharp deviation from mean A/Z at transition Z = 49, Z = 50

Isotopic yields

16th ASRC Workshop - March 2014

2 Fission fragments Set-up Electromagnetic fission

3 Results : actinides

ν_{n}

• Indirect neutron multiplicity measurement :

$$\nu_n = A - (A_L + A_H)$$

• Made possible by excellent resolution on mass

Neutron multiplicity

- Mean value is coherent with ($E^* \approx 13 14 \text{ MeV}$)
- Fission modes are reflected on neutron multiplicity
 - High multiplicity for SL (highly deformed fragments)
 - Sharp drop at Z = 50 ST1
- Deformation plays prominently on u
 - E_{def} relaxes into E_* , released through n emission

2 Fission fragments Set-up Electromagnetic fissio

3 Results : actinides

Total Kinetic Energy

Closely related to the scission configuration :

- N, Z partition : coulomb parameter is $Z/A^{1/3}$
- Deformation

J -F Martin

Court. G. Boutoux, N. Dubray

2 Fission fragments Set-up

3 Results : actinides

- Experiment in Aug. 2012
- For the very first time, both fragments are fully and simultaneously identified
- With unprecedented resolution
 - Paramount for the applications
- Over 80 nuclei
 - Overview on the nuclear landscape
- New experiment in September 2014
 - Many improvements : count better, count faster
 - Measure $^{236}U \approx ^{235}U + n$

CHALMERS UNIVERSITY OF TECHNOLOGY