Production and decay studies of ²⁶¹Rf, ²⁶²Db, and ²⁶⁵Sg at GARIS@RIKEN

RIKEN Nishina Center

Hiromitsu Haba

CONTENTS

- Production and decay studies of ²⁶¹Rf, ²⁶²Db, and ²⁶⁵Sg
 - **1. Chemistry of superheavy elements**
 - 2. RIKEN GARIS for SHE chemistry

Production and decay studies of ²⁶⁵Sg^{*a,b*} and ²⁶²Db

- Summary of the ²⁰⁹Bi(⁷⁰Zn,*n*)²⁷⁸113 experiment
- Future plans

Production and decay studies of ²⁶¹Rf, ²⁶²Db, and ²⁶⁵Sg

Periodic table of the elements (2014)

\setminus	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
4	1																	2
1	Н																	Не
	3	4											5	6	7	8	9	10
2	Li	Be B C							Ν	0	F	Ne						
	11	12											13	14	15	16	17	18
3	Na	Mg											Al	Si	Р	S	Cl	Ar
	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
4	К	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
	37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
5	Rb	Sr	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
	55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
6	Cs	Ва	La	Hf	Та	W	Re	Os	Ir	Pt	Au	Hg	ΤI	Pb	Bi	Ро	At	Rn
			•															
La	antha	anide		57 • • •	58	59	60	61	62	63	64	65	66	67	68	69	70	71
				La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Тb	Dy	Но	Er	Tm	Yb	Lu
				00	00	01	07	02	04	05	06	07	00	00	100	101	102	102
	Acti	nide	••		50 Th		52	95 Nim	94 D	95 A 100		ינ ער	<u>с</u> г	55				105
			•	AC	IN	Pa	U	мр	Pu	Am	Cm	ВК	C	ES	FM	IVIO	INO	Lſ
87 88 89 104 105 106 107 108 109 110 111 112 114 116																		
7	Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	113	FI_	115	Lv	117	118
	•••		,								0.1							
	Superheavy elements (SHEs)																	

1. Chemistry of Superheavy Elements *Frontiers in chemistry*

- Chemical properties, periodicity, and electronic structure of new elements? Verification of the influence of relativistic effects on chemical reactions
- Small cross sections (nb or pb) and short half-lives (< 1min)
 - → Rapid and effective chemical experiments with "single atoms" at accelerators

Publications of Experimental Studies on SHE Chemistry

Gas-jet transport technique just behind the target

Limitations

- Large amount of background radioactivities from unwanted reaction products
- Decrease of gas-jet yields due to plasma condition induced by an intense beam

2. RIKEN GARIS for SHE chemistry

Coupling SHE chemistry to recoil separators

Breakthroughs in SHE chemistry

- Chemical and physical experiments under low background condition
- Stable and high gas-jet transport efficiency
- New chemical reactions

Development of a gas-jet transport system coupled to GARIS

- ¹⁶⁹Tm(⁴⁰Ar,3n)²⁰⁶Fr; ²⁰⁸Pb(⁴⁰Ar,3n)²⁴⁵Fm [JNRS 8, 55 (2007); EPJD 45, 81 (2007)]
- ²³⁸U(²²Ne,5n)²⁵⁵No [JNRS 9, 27 (2008)]

In this presentation

Production and decay studies of ²⁶¹Rf^{*a,b*}, ²⁶⁵Sg^{*a,b*}, and ²⁶²Db

- ²⁴⁸Cm(¹⁸O,5*n*)²⁶¹Rf^{*a,b*} [Chem. Lett. **38**, 426 (2009); PRC **83**, 034602 (2011); PRC **88**, 024618 (2013)]
- ²⁴⁸Cm(²²Ne,5n)²⁶⁵Sg^{a,b} [PRC 85, 024611 (2012)]
- ²⁴⁸Cm(¹⁹F,5*n*)²⁶²Db [PRC 89, 024618 (2014)]

Experimental setup

Experimental setup

Production of ²⁶¹Rf, ²⁶²Db, and ²⁶⁵Sg using the GARIS gas-jet system

Nuclide	²⁶¹ Rf ^{<i>a,b</i>} (<i>Z</i> =104)	^{262,263} Db (<i>Z</i> =105)	²⁶⁵ Sg ^{<i>a,b</i>} (Z=106)			
Half-life	68, 3 s ¹⁾	34 s, 27 s ²⁾	8.9, 16.2 s ¹⁾			
Reaction	²⁴⁸ Cm(¹⁸ O,5 <i>n</i>)	²⁴⁸ Cm(¹⁹ F,5;4 <i>n</i>)	²⁴⁸ Cm(²² Ne,5 <i>n</i>)			
Cross section (nb)	12 ³⁾ , ?	1.5 ³⁾ , ?	0.2–0.3 ¹⁾ ?			
Beam energy (MeV)	95	103, 97.4	118			
Beam intensity (pµA)	7	4	3			
²⁴⁸ Cm ₂ O ₃ thickness (µg/cm ²)	280/230	230/290/330	230/280			
Magnetic rigidity (Tm)	1.58–2.16	1.73–2.09	1.73–2.16			
GARIS He (Pa)	33	32	33			
RTC Mylar window (µm)	0.5	0.5	0.7			
Honeycomb grid (%)	78/84	84	72/84			
Gas-jet He (kPa)	49	47	49			
Chamber depth (mm)	20	20	40			
He flow rate (L/min)	2.0	2.0	2.0			
KCl generator (°C)	620	620	600/605			
Step interval of MANON (s)	30.5, 2.0	15.5	20.5/10.5			
1) Düllmann and Türler, PRC 77 , 064320 (2008). 2) Firestone and Shirley, <i>Table of Isotopes</i> , 8th ed. (Wiley, New York, 1996). 3) Nagame <i>et al.</i> , JNRS 3 , 85 (2002).						

(a) ²⁴⁸Cm(²²Ne,5*n*)²⁶⁵Sg^{*a,b*}

Beam energy	²⁴⁸ Cm ₂ O ₃ target	Magnetic rigidity	Beam dose	Step interval
(MeV)	(µg/cm²)	(Tm)	(× 10 ¹⁸)	of MANON
117.8	280	1.73	2.07	20.5
117.8	280	1.94	1.91	20.5
117.8	280	1.94	0.431	10.5
117.8	280	2.16	1.57	20.5
117.8	280	2.04	0.639	20.5
117.8	230	2.07	11.2	20.5

<u> α energy and half-life of ²⁶⁵Sg^{*a,b*}</u>

This work					Düllmann and Türler (2008)			
	n	E_{α} [MeV]	<i>T</i> _{1/2} [s]	b _{SF} [%]	n	E_{α} [MeV]	<i>T</i> _{1/2} [s]	
²⁶⁵ Sg ^a	18	8.84±0.05	8.5 ^{+2.6} -1.6	≤ 50	20	8.85	8.9 ^{+2.7} -1.3	
²⁶⁵ Sg ^b	24	8.69±0.05	14.4 ^{+3.7} -2.5	≤ 51	24	8.70	16.2 ^{+4.7} -1.9	

Decay patterns observed in the chain ${}^{265}Sg^{a,b} \rightarrow {}^{261}Rf^{a,b} \rightarrow {}^{257}No$

Cross section

Assumptions: GARIS eff. = 13%; gas-jet eff. = 50%; gas-jet transport time = 3 s

Excitation functions for ²⁴⁸Cm(²²Ne,xn) 10³ his work DGFRS 1994 Cross section (pb) OLGA 1998 0 🔷 **PSI-Tape 2000** PSI-Tape 1998 **HITGAS 2001 4***n* 10² 4 🗌 3n 6*n* **10**¹ 105 100 115 120 125 130 135 140 110 Lab-frame energy E_{Lab} (MeV)

HIVAP calculation

Reisdorf and Schädel, ZPA **343**, 47 (1992). Nishio *et al.*, PRL **93**, 162701 (2004). Nishio *et al.*, PRC **82**, 024611 (2010).

In the entrance channel, a prolate deformation of the target nucleus was taken into account to calculate the capture cross section. (b) ²⁴⁸Cm(¹⁹F,5*n*)²⁶²Db

Search for correlations

 $E_{\alpha} = 8.0-9.0 \text{ MeV}; E_{SF} \ge 30 \text{ MeV}$ $\Delta T \le 59.5 \text{ s}$

	Observed	Random
α-α	75	< 2.9
α-SF	2	< 0.6

²⁴⁸Cm(¹⁹F,5*n*)²⁶²Db → ²⁵⁸Lr: 76 ²⁴⁸Cm(¹⁹F,6*n*)²⁶¹Db → ²⁵⁷Lr: 1 ²⁴⁸Cm(¹⁹F,4*n*)²⁶³Db → ²⁵⁹Lr: 0

Single SF events: 123

Table of Isotopes, 8th ed.

<u>α energy and half-life of ²⁶²Db</u>

Single SF events

Cross section for ²⁴⁸Cm(¹⁹F,xn)^{267-x}Db

- New decay data of ²⁶²Db and ²⁵⁸Lr
 b_{SF}(²⁶²Db) = 52%; b_{EC}(²⁵⁸Lr) = 2.6%
- Nagame *et al.*, JNRS **3**, 85 (2002).
 σ = 1.5±0.4 nb at 103 MeV for ²⁴⁸Cm(¹⁹F,5*n*)²⁶²Db

	Droducto	Cross sections [nb]				
	Products	103.1 MeV	97.4 MeV			
	²⁶¹ Db (6 <i>n</i>)	0.28 ^{+0.65} _{-0.23}	< 0.10			
	²⁶² Db (5 <i>n</i>)	2.1±0.7	0.23 ^{+0.18} 0.11			
	²⁶³ Db (4 <i>n</i>)	< 0.064	< 0.13			

Cross sections for ²⁴⁸Cm(X,5n)

→ ²⁴⁸Cm(²⁷Al,5*n*)²⁷¹Mt (Z = 109): ≈ 1 pb

3. Summary

- The gas-jet transport system was installed in RIKEN GARIS for SHE chemistry.
- The production and decay properties of ²⁶¹Rf, ²⁶²Db, and ²⁶⁵Sg for chemical studies were investigated using MANON under low background conditions attained by the GARIS gas-jet system.

Summary of the ²⁰⁹Bi(⁷⁰Zn,*n*)²⁷⁸113 experiment

Experimental setup

Experimental conditions

Reaction	²⁰⁹ Bi(⁷⁰ Zn <i>,n</i>) ²⁷⁸ 113
Period	Sept. 5, 2003 – Aug. 18, 2012
Irradiation time	13274 hours (553 days)
Experimenters	43
Beam energy	348 MeV in the middle of the target
Beam intensity	0.47 pμA (2.8×10 ¹² s ⁻¹)
Beam integral	$1.35 imes 10^{20}$ (15 mg)
Target thickness	0.45 mg cm ⁻² (1.3 $ imes$ 10 ¹⁸ cm ⁻²)
GARIS eff.	80%
PSD + SSD eff.	94%

Summary of the element 113 experiment

Expe	erimental period	Irradiation	Beam integral	No. of events
Year	Date (month/day)	[d]	[×10 ¹⁹]	
2003	9/5 - 12/29	57.9	1.24/1.24	0
2004	7/8 - 8/2	21.9	0.51/1.75	1
2005	1/20 - 1/23	3.0	0.07/1.82	0
2005	3/20 - 4/22	27.1	0.71/2.53	1
2005	5/19 - 5/21	2.0	0.05/2.58	0
2005	8/7 - 8/25	16.1	0.45/3.03	0
2005	9/7 - 10/20	39.0	1.17/4.20	0
2005	11/25 - 12/15	19.5	0.63/4.83	0
2006	3/14 - 5/15	54.2	1.37/6.20	0
2008	1/9 - 3/31	70.9	2.28/8.48	0
2010	9/7 - 10/18	30.9	0.52/9.00	0
2011	1/22 - 5/22	89.8	2.01/11.01	0
2011	12/2 - 12/19	14.4	0.33/11.34	0
2012	1/15 - 2/9	25.0	0.56/11.90	0
2012	3/13 - 4/17	33.7	0.79/12.69	0
2012	6/12 - 7/2	15.7	0.25/12.94	0
2012	7/14 - 8/18	32.0	0.57/13.51	1
Total		553	13.5	3

Observation of ²⁷⁸113

Future plans

Chemistry using preseparated ²⁶¹Rf^{*a*}, ²⁶²Db, and ²⁶⁵Sg^{*a*,*b*}

- Aqueous chemistry by solvent extraction with LS
- Gas chemistry by direct complexation without aerosols
- ²⁴⁸Cm(²³Na,4n)²⁶⁷Bh (scheduled in 2014)

Syntheses of the heaviest SHEs

- ²⁴⁸Cm(⁴⁸Ca,*xn*)^{296-*x*}Lv (in progress)
- ²⁴⁸Cm(⁵⁰Ti,*xn*)^{298-x}118 (scheduled in 2014)
- ²⁴⁸Cm(⁵¹V,*xn*)^{299-*x*}119
- ²⁴⁸Cm(⁵⁴Cr,*xn*)^{302-x}120
- Commissioning of GARIS II (in progress)

High precision mass measurement of SHE nuclei ($\delta m/m \approx 0.5$ ppm)

• GARIS II + RF-Carpet + MRTOF Spectrograph (scheduled in 2014)

Collaborators for the GARIS gas-jet experiment Nishina Center for Accelerator-Based Science, RIKEN M. Huang, D. Kaji, J. Kanaya, Y. Kudou, K. Morimoto, K. Morita, M. Murakami, K. Ozeki, R. Sakai, T. Sumita, Y. Wakabayashi, and A. Yoneda

Osaka Univ.

Y. Kasamatsu, Y. Kikutani, Y. Komori, K. Nakamura, and A. Shinohara

Tohoku Univ. H. Kikunaga

Niigata Univ. T. Kojima, H. Kudo, H. Murayama, K. Ooe, and S. Goto

Advanced Science Research Center, JAEA K. Nishio, N. Sato, T. K. Sato, A. Toyoshima, and K. Tsukada

Collaborators for the element 113 experiment

RIKEN
K. Morita, K. Morimoto, D. Kaji, H. Haba, K. Ozeki, Y.
Kudou, Y. Wakabayashi, A. Yoneda, A. Yoshida, T. Onishi,
Y. Kasamatsu, H. Hasebe, M. Huang, R. Kanungo, K.
Katori

- Tokyo Univ. Sci. T. Sumita, K. Tanaka
- Saitama Univ. T. Yamaguchi, T. Akiyama, R. Sakai, S. Yamaki
- Niigata Univ. H. Kudo, S. Goto, M. Murakami, H. Murayama, Y. Kariya
- IMP H. Xu, T. Huang
- Univ. Tokyo E. Ideguchi
- Tohoku Univ. T. Suda, H. Kikunaga
- JAEA N. Sato, T. Koura, S. Mitsuoka

Yamagata Univ. F. Tokanai, T. Moritani, K. Mayama, M. Takeyama, S. Namai, A. Mashiko

- Univ. Tsukuba A. Ozawa, K. Sueki
- IHEP Y. Zhao

Thank you for your kind attention.