A Compact Double Bragg Detector for Event-by-Event Study of the Fission Process in Actinide Nuclei

Robert Frost, Gavin Smith, Lizzie Murray, Andrew Pollitt The University of Manchester

Contents of this Talk

- Project Objectives
- Principles of Detector Design
 - present and future
- Data Analysis
- Modelling and Experimental Work
- The Future

Project Objectives

- Detection of fission fragments in 4pi
- Measure E and determine A and Z for both fragments
- Identification of ternary fission events
- Obtain angular distributions in 3D
- Adaptable for various methods of inducing fission
- Combine with 4pi neutron/gamma detection arrays

Double Bragg Detector – Principle of Operation

Position sensitivity using charge induced by electron drift

- Cathode signals give positions sensitive information
- BUT... Cathode signal SUM of side1 and side2 inseparable
- Grid1 + Anode1 = Cathode1
- No information on azimuthal angle available

Position sensitivity using anode segmentation

- Radial anode segmentation
 - Polar angle determination
 - Only two segment required
 - Comparison of signal peak-hight and peaking-time

- Transverse anode segmentation
 - Azimuthal angle determination
 - Resolution only as good as degree of segmentation
 - Many channels needed

Position sensitivity using electrode segmentation

Central

Outer

Combined cathode segmentation and electron drift method

• Split cathode to serve each side of the detector independently

- Transversely segmented
- Charge induced by electron drift means only three segments required for azimuthal

Fission source

Combined cathode segmentation and electron drift method - Issues

- Split cathode will act as a capacitor
- Additional plate must be added and tie to local ground
- Dead region created either side of fission source
- Challenging to manufacture

Other Important design considerations

- Electric field linearity
- Grid inefficiency function of detector and grid geometries,
- Inter electrode capacitances
- Fill gases fast electron drift with low electric fields, fast neutrons experiments require non-H based gases
- Source design, vapour deposition, self-spluttering

Data Acquisition

- Gamma Ray Tracking 4 Cards
 - 4 channels per card
 - 80MHz ADC's (12.5ns channel width)
 - Event window of ~500 Samples (~5us)
 - Pre-trigger of up to 5us
- MVME5500 single board computer
 - Runs the MIDAS TimeSysLinux firmware
 - Multiple card configuration possible
 - VME bus limit of 4Mbytes/sec
 - And PC running:

- Developed at the Daresbury Laboratory

Data Analysis

- High-pass and low-pass filters
 - Removal of low frequency baseline components
 - Differentiation
- Ballistic deficit correction
 - Resulting from fall time of the amplifiers
- Energy loss in target corrections
 - Gold for 252Cf
 - Mylar for 232Th
- Correction for Frisch grid inefficiency
 - Appears as an early rise of a few % on the pulse traces
- Corrections for energy deposited by neutron-induced charged particle emission (fast neutron experiments only)
- Reconstruction of the segmented anode signals

Data Analysis

- Energy is given by anode pulse hight
- Masses are then given by double E method:

$$m_1 = \frac{E_2 M_{CN}}{E_1 + E_2} \qquad m_2 = \frac{E_1 M_{CN}}{E_1 + E_2}$$

- Angle is determined by methods discussed previously
- Range can be estimated using angle and collection time
- Peak stopping Power can be used to estimate charge

Modelling

- Neutron transport using MCNP4
- Spice modelling capacitance effects
- Basic 2D Signal generation using SRIM/Mathematica
- Advanced 3D Signal Generation using SRIM/GMSH/Garfield

252Cf Spontaneous fission at the University of Manchester

- Large data sets from varying stages of the detectors development.
- Preliminary analysis undertaken on small data subsets
- Results consistent with expectations bar a few anomalies to be investigated

Difference in peakingtime

Background test with fast neutrons at the LPSC, Grenoble

- Source of emissions confirmed by 2.5MeV
- Al entry window replaced with thin Mylar
- Borated polyethylene collimator

- Trace 252Cf in chamber
- Runs conducted at 14MeV
- Evidence of charged particle emission from chamber components
- Cross-sections show events start to become significant above ~6MeV

The Future

• ILL, Grenoble - thermal neutrons with 235U target

 nTOF, CERN – white neutron spectrum with energy determined by time-of-flight

• Gammasphere - correlation of prompt gamma emission with fragments from SF source

Sponsors and Collaborators

Engineering and Physical Sciences Research Council

Nuclear FiRST Doctoral Training Centre

University of Manchester

University of Sheffield

National Nuclear Laboratory Ltd.

Laboratoir de Physique Subatomique et de Cosmologie

Daresbury Laboratory - Science and Technology Facilities Council

