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Project Objectives

● Detection of fission fragments in 4pi

● Measure E and determine A and Z for both fragments

● Identification of ternary fission events

● Obtain angular distributions in 3D

● Adaptable for various methods of inducing fission

● Combine with 4pi neutron/gamma detection arrays



  

Double Bragg Detector – Principle 
of Operation

● Source mounted in  
cathode plane

● Drift region between 
cathode and grid

● Collection region 
between grid and 
anode

Ionisation track

Electron drift

Anode

Frisch grid Cathode

Fission source



  

Position sensitivity using charge 
induced by electron drift

● Cathode signals give positions 
sensitive information

● BUT... Cathode signal SUM of 
side1 and side2 – inseparable

● Grid1 + Anode1 = Cathode1

● No information on azimuthal 
angle available

30 degrees

60 degrees



  

Position sensitivity using anode 
segmentation

● Radial anode segmentation
– Polar angle determination 

– Only two segment required

– Comparison of signal peak-hight and 
peaking-time

● Transverse anode segmentation
– Azimuthal angle determination

– Resolution only as good as degree of 
segmentation

– Many channels needed



  

Position sensitivity using electrode 
segmentation

30 degrees

60 degrees

Central Outer



  

Combined cathode segmentation 
and electron drift method 

● Split cathode to serve each side 
of the detector independently

● Transversely segmented

● Charge induced by electron drift 
means only three segments 
required for azimuthal

Splitting into two plates

Fission source



  

Combined cathode segmentation 
and electron drift method - Issues 

● Split cathode will act as a 
capacitor

● Additional plate must be added 
and tie to local ground

● Dead region created either side of 
fission source

● Challenging to manufacture



  

Other Important design 
considerations

● Electric field linearity

● Grid inefficiency – function of detector and grid geometries,

 
● Inter electrode capacitances

● Fill gases – fast electron drift with low electric fields, fast 
neutrons experiments require non-H based gases

● Source design, vapour deposition, self-spluttering



  

Data Acquisition

• Gamma Ray Tracking 4 Cards
– 4 channels per card
– 80MHz ADC’s (12.5ns channel width)
– Event window of ~500 Samples (~5us)
– Pre-trigger of up to 5us

• MVME5500 single board computer
– Runs the MIDAS TimeSysLinux firmware
– Multiple card configuration possible
– VME bus limit of 4Mbytes/sec

• And PC running:

– Developed at the Daresbury Laboratory



  

Data Analysis
• High-pass and low-pass filters

– Removal of low frequency baseline components 
– Differentiation

• Ballistic deficit correction
– Resulting from fall time of the amplifiers

• Energy loss in target corrections
– Gold for 252Cf
– Mylar for 232Th

• Correction for Frisch grid inefficiency
– Appears as an early rise of a few % on the pulse traces

• Corrections for energy deposited by neutron-induced charged 
particle emission (fast neutron experiments only)

• Reconstruction of the segmented anode signals



  

Data Analysis

• Energy is given by anode pulse hight

• Masses are then given by double E method:

• Angle is determined by methods discussed previously

• Range can be estimated using angle and collection time

• Peak stopping Power can be used to estimate charge



  

Modelling

● Neutron transport using MCNP4

● Spice modelling – capacitance effects

 
● Basic 2D Signal generation using SRIM/Mathematica

● Advanced 3D Signal Generation using 
SRIM/GMSH/Garfield



  

252Cf Spontaneous fission at the University of 
Manchester

• Large data sets from varying stages of the 
detectors development.

• Preliminary analysis undertaken on small data 
subsets

• Results consistent with expectations bar a few 
anomalies to be investigated
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• Source of emissions confirmed 
by 2.5MeV

• Al entry window replaced with 
thin Mylar

• Borated polyethylene collimator

• Trace 252Cf in chamber

• Runs conducted at  14MeV

• Evidence of  charged particle 
emission from chamber 
components

• Cross-sections show events start to 
become significant above ~6MeV

Background test with fast neutrons at the 
LPSC, Grenoble



  

The Future

● ILL, Grenoble - thermal neutrons with 235U 
target

● nTOF, CERN – white neutron spectrum with 
energy determined by time-of-flight

● Gammasphere - correlation of prompt gamma 
emission with fragments from SF source
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