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Plan

• Title explained on the:
1) Angular distribution with respect to the fission axis
and related quantity → νL/νH

2) Distribution of kinetic energies
3) Average multiplicity
• Dynamical Scission Model (Formalism):
1) Excitation energy and neutron multiplicity
2) Probability and current densities
• Selected numerical results:
1) Time dependent decay rate
2) What influences the angular distribution?
3) "Saw-tooth" structures.
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Calculated and experimental angular distribution; ∆θ = 16◦
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Note the resemblance of the data with our calculations
(except the widths on both sides). TOKAI14 – p.3/38



Scission neutron multiplicity: L vs H fragment

H
H

H
H

H
H

AL 70 96 118

T/10−22 νsc νL/νH νsc νL/νH νsc νL/νH

1 0.667 0.891 0.561 1.075 0.612 1.
T νem

sc νL/νH νem
sc νL/νH νem

sc νL/νH

10 0.109 1.759 0.118 1.424 0.121 1.
20 0.247 1.056 0.258 1.348 0.283 1.
30 0.315 1.077 0.363 1.402 0.346 1.
40 0.352 1.066 0.429 1.414 0.377 1.

The ratio corresponds to two regions of the interval
(0, 180), the separation point being obtained in terms of
the neck position. They represent neutrons which move
left and right with respect to a plane perpendicular to the
neck.
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Scission neutron multiplicity: L vs H fragment

H
H

H
H

H
H

AL 70 96 118

T νem
sc νL/νH νem

sc νL/νH νem
sc νL/νH

10 0.109 1.901 0.118 1.448 0.121 1.
20 0.247 1.218 0.258 1.378 0.283 1.
30 0.315 1.282 0.363 1.469 0.346 1.
40 0.352 1.288 0.429 1.540 0.377 1.

The ratio corresponds to the regions: θ ∈ [0, 50] and
θ ∈ [130, 180]. All the states corresponding to
Ω = 1/2, ..., 7/2 have been taken into account.
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Histogram of the average scission-neutron energy

immediately after scission (α=1.001) for two transition
times ∆T
The experimental prompt-neutron spectrum is also
shown to compare the trends: the slope and the range.
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Length of scission jump and neutron multiplicity
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Increasing rmin
neck from 1.6 to 1.9 fm quadruples νsc

N. Carjan,P.Talou,O.Serot, NuclPhysA792(2007)102
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Modeling a diabatic transition at scission (neck rupture)
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Equipotential lines V0/2 (just-
before and immediately-after
scission) for different mass
asymmetries.

A fast transition at scis-
sion produces the ex-
citation of all neutrons
that are present in the
surface region. There is
a small probability that
this excitation exceeds
the binding energy lead-
ing to neutron release.
This process is easy to
study in the sudden ap-
proximation (∆T=0):
N.Carjan,M.Rizea,
Phys.Rev.C82(2010)014617
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Going beyond the sudden approximation

A time-dependent approach to the fast transition at scission:

{αi} → {αf}: M.Rizea,N.Carjan,
Nucl.Phys.A909(2013)50.
Features of this scission model:
1) dynamical: it takes into account the finite duration ∆T
of the neck rupture and its integration in the fragments
2) microscopic: it calculates the time evolution of each
occupied single-neutron state (shell model)
3) fully quantum mechanical: it uses the two-dimensional
time-dependent Schrödinger equation (TDSE2D) with
time-dependent potential (TDP).
Most previous models were statical (statistical,
semiclassical or constrained Hartree-Fock).
The picture behind the present model was first proposed
by Fuller (Wheeler) in 1962 and illustrated by a "volcano
erupting" in the middle of a Fermi sea. TOKAI14 – p.9/38



Dynamical scission model: formalism

It is a generalization of the sudden approximation.
Let |Ψi〉, |Ψf 〉 be the eigenfunctions corresponding to the
just-before-scission and immediately-after-scission
configurations respectively. The propagated wave
functions |Ψi(t)〉 are wave packets that have also some
positive-energy components. The probability amplitude
that a neutron occupying the state |Ψi〉 before scission
populates a state |Ψf 〉 after scission is

aif = 〈Ψi(T )|Ψf 〉 = 2π

∫ ∫

(gi
1(T )gf

1
+ gi

2(T )gf
2
)dρdz.

The result strongly depends on the duration T of the
scission process.
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Excitation energy of the fission fragments

The total occupation probability of a given final
eigenstate is:

V 2

f =
∑

bound

v2

i |aif |2

where v2

i is the ground-state occupation probability of a
given initial eigenstate. Since V 2

f is different from v2

f (the
ground-state value), the fragments are left in an excited
state. The corresponding excitation energy at scission is:

E∗

sc = 2
∑

bound states

(V 2

f − v2

f )ef .

The factor of 2 is due to the spin degeneracy.
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Neutrons emitted at scission

One can also calculate the multiplicity of the neutrons
released during scission:

νsc = 2
∑

bound

v2

i (
∑

unbound

|aif |2).

A quantity that can clarify the emission mechanism of the
scission neutrons is the probability density i.e.,
the spatial distribution of the emission points at t=T

Sem(ρ, z) = 2 ∗
∑

bound

v2

i |Ψi
em(ρ, z, T )|2,
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where
|Ψi

em〉 = |Ψi(T )〉 −
∑

bound states

aif |Ψf 〉

is the part of the wave packet that is emitted.
Similarly, the current density

D̄em(ρ, z) =
i~

µ

∑

i

v2

i (f
i∇̄f i∗ − f i∗∇̄f i), (1)

with f i = |Ψi
em〉, provides the distribution of the average

directions of motion of the unbound neutrons at t=T.
These two quantities influence the amount of neutrons
that are reabsorbed, scattered or left unaffected by the
fragments and finally determine their angular distribution.
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Emission points ( AL=90; all Ω; ∆T=0,3,5×10−22sec)

with increasing ∆T the emission points migrate from the H to the L
fragment and from the inter-fragment to the inside-fragment regions
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Partition among the fission fragments (1)

Finally it is interesting to separate the contributions of the
light (L) and of the heavy (H) fragment using the
probability of each emitted (or excited) neutron to be
present in the L (or H) fragment:

E∗

sc(L,H) =
∑

f

ef

(

V 2

f − v2

f

)

NL,H
f

νsc(L,H) =
∑

i

v2

i (
∑

f

|aif |2)NL,H
i ,

where the partial norms NL,H
i,f are given by:
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Partition among the fission fragments (2)

NL
i,f = 2π

∫ R

0

∫ zmin

−Z

[

(

gi,f
1

)2

+
(

gi,f
2

)2
]

dρdz

NH
i,f = 2π

∫ R

0

∫ Z

zmin

[

(

gi,f
1

)2

+
(

gi,f
2

)2
]

dρdz

zmin corresponds to the neck position, identified as the
point between −Z and Z where an equipotential line has
a minimum.
The knowledge of E∗

sc(L,H) is important since it enters
into the Monte-Carlo Hauser-Feschbach simulation of
the neutron evaporation from the accelerated fragments.
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Distribution of neutrons with given Ω between L and H

Explains why the light fragment emits more neutrons.
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Partition laws
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Neutron multiplicity function of fission-fragment mass
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νsc(A) for each Ω at ∆T=1
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Emission directions ( AL=96; all Ω; T=1,5,10×10−22sec)

correlation between Sem and Dem; pulsed emission perpendicular
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Emission directions ( AL=96; all Ω; T=14,18,22×10−22sec)

emission along the fission axis; the light-fragment is more productive
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Emission directions ( AL=96; all Ω; T=26,30,36×10−22sec)

emission is slowed down; neutron transfer & reflections

2
4
6
8

10
12
14
16
18
20

-30 -20 -10 0 10 20 30
2
4
6
8
10
12
14
16
18
20-30 -20 -10 0 10 20 30

2
4
6
8

10
12
14
16
18
20

-30 -20 -10 0 10 20 30

z (fm)

ρ 
(f

m
)

AL = 96, Ω = 1/2 ÷ 7/2, T = 26

2
4
6
8

10
12
14
16
18
20

-30 -20 -10 0 10 20 30
2
4
6
8
10
12
14
16
18
20-30 -20 -10 0 10 20 30

2
4
6
8

10
12
14
16
18
20

-30 -20 -10 0 10 20 30

z (fm)

ρ 
(f

m
)

AL = 96, Ω = 1/2 ÷ 7/2, T = 30

2
4
6
8

10
12
14
16
18
20

-30 -20 -10 0 10 20 30
2
4
6
8
10
12
14
16
18
20-30 -20 -10 0 10 20 30

2
4
6
8

10
12
14
16
18
20

-30 -20 -10 0 10 20 30

z (fm)

ρ 
(f

m
)

AL = 96, Ω = 1/2 ÷ 7/2, T = 36

TOKAI14 – p.23/38



Scission-neutron time-dependent decay-rate
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On notices oscillations that reflect a pulsed-emission.
Most neutrons are emitted between 5 and 10 ×10−22s
after scission. For T > 6× 10−21s the decay rate is almost
constant → tunnelling from a quasistationary state. TOKAI14 – p.24/38



Angular distribution - computational procedure

The core of the dynamical scission model is the
calculation of the time evolution of the neutron states in a
nucleus that undergoes scission using the TDSE: N.
Carjan, M. Rizea, Int. J. Mod. Phys. E21 (2012) 0031125
To estimate the angular distribution with respect to the
fission axis of the neutrons emitted during scission we
separate this calculation in two stages:
1)The scission process itself, i.e., the neck rupture and its
absorption by the fragments. The nuclear configurations
involved are defined by a set of deformations {αi} ( when
the neck starts to break) and {αf} (when the neck stubs
are completely absorbed by the fragments). The duration
of this stage is relatively short (e.g. T = 10−22 sec) and
the potential in which the neutrons move changes rapidly.
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Angular distribution - procedure

2)The detachment from the fragments of the fraction of
the neutrons that are left unbound at the end of the
previous stage. Since their motion is much faster than
that of the just separated fragments, one can, in a first
approximation, freeze the fragments at the configuration
{αf}. Hence the potential in which the neutrons move is
kept constant during this stage. We follow the motion of
the wave packet that describes the unbound neutrons for
as long as we can (4 × 10−21sec) and calculate the
current density at each time step. To obtain the angular
distribution one separates the tangential from the radial
components of the current along the surface of a large
sphere and integrate in time.
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Angular distribution - formula

• The number of neutrons that leave a sphere of radius R
(around the fissioning nucleus) in a solid angle dΩ and in
a time interval dt is:
dνem

sc = J̄em(R, θ, t)n̄(R, θ, t)R2dtdΩ.

• The angular distribution is given by the integral with
respect to t of the above quantity. The upper limit should
in principle be ∞. In practice we can reach only a finite
value tmax.
• The total number of emitted neutrons νem

sc at tmax is
obtained by a further integration with respect to θ
(dΩ = sinθdθ).
A factor of 4π also appears due to the integration over the
angle φ and to the spin degeneracy.
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The time evolution of the ang distr for AL = 96 at R=40 fm

L and H widths increase with increasing time T by ≈ 3◦.
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Contribution of Ω=1/2 to the angular distribution

around 0◦ and 180◦ there are only neutrons with Ω = 1/2!
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Angular distribution for Ω= 3/2, 5/2, 7/2 and 9/2

neutrons with high Ω are not emitted along the fission
axis
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Comparison of the ang distr for AL = 96 at R=30 and 40 fm

L and H widths increase with increasing radius R by ≈ 3◦;
convergence is probably not yet attained
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Simultaneous motion of the fission fragments
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It slows down the neutron emission!?
It doesn’t affect the width.
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Role of the imaginary potential ( W0 = 2MeV )
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As expected: it reduces the scission neutron multiplicity.
Surprisingly: it does not increase the widths of the
angular distribution.
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Experimental angular resolution

To compare with the experimental data one has to fold
with the angular resolution function:

dσ

dθ
|θ=θ0

=

∫

∞

−∞

dσ

dθ
r(θ, θ0)dσ

where

r(θ, θ0) =
1√
2πǫ

exp

[

−(θ − θ0)
2

2ǫ2

]

and dσ
dθ is the angular distribution. The value of ǫ is

obtained via the half width:

ǫ
√

2 ln 2 = ∆θ1/2.
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Convolution with the angular resolution function
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Remarks on angular distribution

The angular distribution of the neutrons emitted at
scission is calculated starting with initial conditions given
by a realistic scission model that is dynamical,
microscopic and quantum mechanical. It uses nuclear
configurations at scission that are appropriate for the
main fission mode in the 235U(nth, f) reaction.
Although the neutrons are mainly released in the
interfragment region, they do not move perpendicular to
the fission axis but are drained into the fragments (more
into the light one) and finally leave the fissioning system
through its tips. They therefore move along the fission
axis with an average velocity not too far from the velocity
of the fully accelerated fragments. Curiously enough, the
ratio νL/νH is close to the experimental value (1.41)
averaged over all fragment pairs.
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Remarks on energy distribution

The calculated distribution of the average energies of
each neutron released at scission agrees well with the
slope and the range of the measured prompt-neutron
spectrum.
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Conclusions

Unusual process : simultaneous partial emission of all
neutrons present in a fissioning nucleus at scission.
Unusual approach: time-dependent shell-model.
Unexpected agreement: with measured properties of
prompt fission-neutrons.
⇒ It is a viable alternative to the evaporation hypothesis.
Limitations: due to the complexity of the calculations we
were not so far able to:
1)Use a larger numerical grid than: ρmax = zmax = 42fm;
but TBC were implemented at the numerical boundary.
2)Propagate the wave packet of the unbound neutrons
longer than: 4 × 10−21s; however the majority of neutrons
have left the sphere by then.
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