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e Title explained on the:

1) Angular distribution with respect to the fission axis
and related quantity — vy, /vy

2) Distribution of kinetic energies

3) Average multiplicity

e Dynamical Scission Model (Formalism):
1) Excitation energy and neutron multiplicity
2) Probability and current densities

e Selected numerical results:

1) Time dependent decay rate

2) What influences the angular distribution?
3) "Saw-tooth" structures.




Calculated and experimental angular distribution; Af = 16°
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Note the resemblance of the data with our calculations

(except the widths on both sides).



Scission neutron multiplicity: L vs H fragment

70 118

T/10722 || v, vr /v || Vse v /v || Vse v /v

1 0.667 | 0.891 || 0.561 | 1.075 || 0.612 | 1.

T pEm vr /v || VSR vy /v || VST v /v

10 0.109 | 1.759 | 0.118 | 1.424 || 0.121 | 1.

20 0.247 | 1.056 | 0.258 | 1.348 || 0.283 | 1.

30 0.315| 1.077 || 0.363 | 1.402 || 0.346 | 1.

40 0.352 | 1.066 || 0.429 | 1.414 | 0.377 | 1

The ratio corresponds to two regions of the interval

(0, 180), the separation point being obtained in terms of
the neck position. They represent neutrons which move
left and right with respect to a plane perpendicular to the

neck.




Scission neutron multiplicity: L vs H fragment

AL 70 118
T pm vy /v || vET vy /vy || VST vy /vy
10 0.109 | 1.901 || 0.118 | 1.448 || 0.121 | 1.
20 0.247 | 1.218 || 0.258 | 1.378 || 0.283 | 1.
30 0.315| 1.282 || 0.363 | 1.469 || 0.346 | 1.
40 0.352 | 1.288 || 0.429 | 1.540 || 0.377 | 1.

The ratio corresponds to the regions: 6 € [0, 50] and
0 € (130, 180]. All the states corresponding to
(2 =1/2,...,7/2 have been taken into account.




Histogram of the average scission-neutron energy

Immediately after scission («=1.001) for two transition
times AT

The experimental prompt-neutron spectrum is also
shown to compare the trends: the slope and the range.
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Length of scission jump and neutron multiplicity
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Increasing """ from 1.6 to 1.9 fm quadruples v,
N. Carjan,P.Talou,O.Serot, NuclPhysA792(2007)102
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Modeling a diabatic transition at scission (neck rupture)

A fast transition at scis-

sion produces the ex-
sl citation of all neutrons
% that are present in the
N | surface region. There is
R I a small probability that
| | this excitation exceeds
the binding energy lead-
Ing to neutron release.
WS This process Is easy to
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Equipotential lines V/2 (just- study in the sudden ap-
before and immediately-after proximation (AT=0):
scission) for different mass N.Carjan,M.Rizea,

asymmetries. Phys.Rev.C82(2010)014617
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Going beyond the sudden approximation

A time-dependent approach to the fast transition at scission:

{a'} — {a’}: M.Rizea,N.Carjan,
Nucl.Phys.A909(2013)50.

Features of this scission model:

1) dynamical: it takes into account the finite duration AT
of the neck rupture and its integration in the fragments
2) microscopic: it calculates the time evolution of each
occupied single-neutron state (shell model)

3) fully guantum mechanical: it uses the two-dimensional
time-dependent Schrodinger equation (TDSE2D) with
time-dependent potential (TDP).

Most previous models were statical (statistical,
semiclassical or constrained Hartree-Fock).

The picture behind the present model was first proposed
by Fuller (Wheeler) in 1962 and illustrated by a "volcano

erupting” in the middle of a Fermi sea.



Dynamical scission model: formalism

It Is a generalization of the sudden approximation.

Let | &%), |U/) be the eigenfunctions corresponding to the
just-before-scission and immediately-after-scission
configurations respectively. The propagated wave

functions |¥*(¢)) are wave packets that have also some
positive-energy components. The probability amplitude
that a neutron occupying the state |¥*) before scission

populates a state |U/) after scission is

i = (W) =2x [ [ (61T + h(T)a] oz

The result strongly depends on the duration 7' of the
Scission process.




Excitation energy of the fission fragments

The total occupation probability of a given final

eigenstate is:
Vi= Y vflaif|

bound

where +# is the ground-state occupation probability of a
given initial eigenstate. Since V7 is different from v (the

ground-state value), the fragments are left in an excited
state. The corresponding excitation energy at scission Is:

Ef.=2 Y  (Vi—v}ey.

bound states

The factor of 2 is due to the spin degeneracy.




Neutrons emitted at scission

One can also calculate the multiplicity of the neutrons
released during scission:

Ve = 2 Z UZQ( Z ‘aif|2)'

bound unbound

A quantity that can clarify the emission mechanism of the
scission neutrons is the probability density I.e.,
the spatial distribution of the emission points at t=T

Sem(p7 Z) = 2% Z U?‘\Ijﬁzm(pa Z,T)|2,

bound




where
i) = (T = > a9
bound states
IS the part of the wave packet that is emitted.
Similarly, the current density
B uh 1N L1k 1k £1
Dem(p,2) = - 3 [ 0i(f'Vf* = [V ) (1)

7

with f* =¥ ), provides the distribution of the average
directions of motion of the unbound neutrons at t=T.
These two quantities influence the amount of neutrons
that are reabsorbed, scattered or left unaffected by the
fragments and finally determine their angular distribution.




Emission points ( A7,=90; all Q; AT=0,3,5x10"%?sec)

with increasing AT the emission points migrate from the H to the L
fragment and from the inter-fragment to the inside-fragment regions
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Partition among the fission fragments (1)

Finally it Is interesting to separate the contributions of the
ight (L) and of the heavy (H) fragment using the
probability of each emitted (or excited) neutron to be
oresent in the L (or H) fragment:

Ef(LH)=> ep (V7 —vf) Ny
f

Vee(L, H) = Z Z\az\

where the partial norms N& f are given by:




Partition among the fission fragments (2)

NE; = or / / [(g'j’f ) + (g;f ) ] dpdz
0 —Z
R rZ N 2 N 2
N{je = 277/() / [(gi’f) + (g;’f) ] dpdz

zmin COrresponds to the neck position, identified as the
point between —Z and Z where an equipotential line has
a minimum.

The knowledge of E7.(L,H) is important since it enters
Into the Monte-Carlo Hauser-Feschbach simulation of
the neutron evaporation from the accelerated fragments.




Distribution of neutrons with given (2 between L and H

Explains why the light fragment emits more neutrons.
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It is a trivial property of the Nilsson orbitals in asymmetric
double-well potentials. Nothing to do with more

deformation or temperature.
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Partition laws
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Neutron multiplicity function of fission-fragment mass

[ —oLight = Heawy |

A
0.30] 2 S 0.30 ]
A
an —
ol o w . 0=3/2] |
(a2}
o 018 o o “ {0.184 P 1
2
>
012/ Jo.12] a ]
=112 )
0.06 0.06 ]
0.00 0.00 N —
0301 0301 ]
=72
024/ 024/ ]
g 0184 0181
> .0_5/2
0121 0121
0.06 M {0.061 ]
0.00 M’m& 0.00 =4 g‘*ma %
0301 10.30] ]
0.24] 024 0=11/2| |
0.18] 0181 ]
2
>
0121 0=9/2| {o121
0.06 0.06
0.00 Hmﬂnq&n&ﬁw W\’M

A

0.0(
60 80 100 120 140 160 180 60 80 100 120 140 160 180

A

the 'saw-tooth’ is a nuclear structure effect

TOKAI14 — p.19/3¢



vse(A) for each Q at AT=1
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Scission-neutron time-dependent decay-rate
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On notices oscillations that reflect a pulsed-emission.

Most neutrons are emitted between 5 and 10 x 10225
e o1 .

constant — tunnelling from a quasistationary state.



Angular distribution - computational procedure

The core of the dynamical scission model is the
calculation of the time evolution of the neutron states in a
nucleus that undergoes scission using the TDSE: N.
Carjan, M. Rizea, Int. J. Mod. Phys. E21 (2012) 0031125
To estimate the angular distribution with respect to the
fission axis of the neutrons emitted during scission we
separate this calculation in two stages:

1)The scission process itself, I.e., the neck rupture and its
absorption by the fragments. The nuclear configurations
Involved are defined by a set of deformations {«;} ( when
the neck starts to break) and {a ¢} (when the neck stubs

are completely absorbed by the fragments). The duration

of this stage is relatively short (e.g. T = 10722 sec) and
the potential in which the neutrons move changes rapidly.




Angular distribution - procedure

2)The detachment from the fragments of the fraction of
the neutrons that are left unbound at the end of the
previous stage. Since their motion is much faster than
that of the just separated fragments, one can, in a first
approximation, freeze the fragments at the configuration
{ar}. Hence the potential in which the neutrons move Is
kept constant during this stage. We follow the motion of
the wave packet that describes the unbound neutrons for
as long as we can (4 x 10~?'sec) and calculate the
current density at each time step. To obtain the angular
distribution one separates the tangential from the radial
components of the current along the surface of a large
sphere and integrate in time.




Angular distribution - formula

e The number of neutrons that leave a sphere of radius R
(around the fissioning nucleus) in a solid angle d2 and Iin
a time interval dt Is:

dve™ = Jom (R, 0,t)n(R, 0,t) R2dtdS).

e The angular distribution is given by the integral with
respect to ¢ of the above quantity. The upper limit should
In principle be ~. In practice we can reach only a finite
value t¢,,,..

e The total number of emitted neutrons v&" at ¢4, IS
obtained by a further integration with respect to 6

(d) = sinbd0).

A factor of 47 also appears due to the integration over the
angle ¢ and to the spin degeneracy.




The time evolution of the ang distr for  A; = 96 at R=40 fm

L and H widths increase with increasing time T by =~ 3°.
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Contribution of ©=1/2 to the angular distribution

around 0° and 180° there are only neutrons with 2 = 1/2!
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Angular distribution for

(= 3/2, 5/2, 7/2 and 9/2

neutrons with high Q2 are not emitted along the fission

axis
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Comparison of the ang distr for

Ar =96 at R=30 and 40 fm

L and H widths increase with increasing radius R by =~ 3°;

convergence is probably not yet attained
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Simultaneous motion of the fission fragments

s ZPULA =96,Q=1/2,R=40,T =16
| Frozen FF configuration - red
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It doesn’t affect the width.
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Role of the imaginary potential ( Wy = 2MeV)
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As expected: it reduces the scission neutron multiplicity.

Surprisingly: it does not increase the widths of the

—angular distribution.
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Experimental angular resolution

To compare with the experimental data one has to fold
with the angular resolution function:

do * do
— |o=0, —/ @T(Q Oo)do

where
1

2T€

T(@, (9()) m—

(0 — 90)2]

=P [_ 2¢e?

and 22 is the angular distribution. The value of ¢ is
obtained via the half width:

€V 21H A91/2




Convolution with the angular resolution function
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Remarks on angular distribution

The angular distribution of the neutrons emitted at
scission is calculated starting with initial conditions given
by a realistic scission model that is dynamical,
microscopic and quantum mechanical. It uses nuclear
configurations at scission that are appropriate for the
main fission mode in the 2°°U(ny,, f) reaction.

Although the neutrons are mainly released in the
Interfragment region, they do not move perpendicular to
the fission axis but are drained into the fragments (more
Into the light one) and finally leave the fissioning system
through its tips. They therefore move along the fission
axis with an average velocity not too far from the velocity
of the fully accelerated fragments. Curiously enough, the
ratio vy, /vy 1S close to the experimental value (1.41)
averaged over all fragment pairs.




Remarks on energy distribution

The calculated distribution of the average energies of
each neutron released at scission agrees well with the
slope and the range of the measured prompt-neutron
spectrum.




Conclusions

Unusual process : simultaneous partial emission of all
neutrons present in a fissioning nucleus at scission.
Unusual approach: time-dependent shell-model.
Unexpected agreement: with measured properties of
prompt fission-neutrons.

= It IS a viable alternative to the evaporation hypothesis.
Limitations: due to the complexity of the calculations we
were not so far able to:

1)Use a larger numerical grid than: p,,a: = Zmaz = 42/ m;
but TBC were implemented at the numerical boundary.
2)Propagate the wave packet of the unbound neutrons

longer than: 4 x 10~%'s; however the majority of neutrons
have left the sphere by then.
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