

Sectoral Operational Programme "Increase of Economic Competitiveness" *"Investments for Your Future"*

Extreme Light Infrastructure – Nuclear Physics (ELI-NP)

Project co-financed by the European Regional Development Fund

Fission Studies at the New ELI-NP Facility

Dimiter L. Balabanski

16th ASRC Workshop "Nuclear Fission and Structure Of Exotic Nuclei", JAEA, Tokai, March 18th – 20th, 2014

Gerard Mourou 1985: Chirped Pulse Amplification (CPA)

Strickland, Mourou, Opt. Commun. 56, 219 (1985)

954 m

Bucharest-Magurele National Physics Institutes

NUCLEAR Tandem accelerators BUCHAREST Cyclotrons γ – Irradiator **Advanced Detectors Biophysics** rail/road **Environmental Physics Radioisotopes ELI-NP ELI-NP** Lasers Plasma **Optoelectronics Material Physics Theoretical Physics Particle Physics**

nage © 2009 DigitalGlob

ELI-NP Milestones

<u>2005:</u> The ELI project was initiated <u>2007:</u> Identified by the ESFRI Council as top priority research infrastructure EC supported a 36-month Preparatory Phase Project

<u>May 2009:</u> Four main research topics were identified, among them ELI-NP <u>December 2009:</u> Approval of the Competitiveness Council

January 2012: Project submitted to the EC July 2012: Romanian Government Decision Construction of the New Research Infrastructure ELI-NP: 293 M€

September 2012: EC Project Approval European Regional Development Fund Operational Programme Increase of Economic Competitiveness "Investments in your Future" Financial Support (83%) of the First phase (2012-2015) 180 M€

ELI-NP Status

<u>December 2012:</u> Tenders for civil construction and major instrumentation <u>May 2013:</u> Earth breaking <u>Civil construction of the ELLNP constructor</u> (2012 - 2015)

Civil construction of the ELI-NP complex (2013 – 2015)

July 2013: Laser-Beam System (LBS) contract signed

Construction of the 2 x 10 PW Lasers (2013 – 2017)

March 2014: Gamma-Beam System (GBS) contract signed

Construction of 200 keV – 20 MeV gamma-beam system (2104 – 2018)

<u>April 2013:</u> Science Division of ELI-NP was established Definition and preparation of experimental TDRs (due in early 2015)

2015: Tenders for experimental instrumentation 2017: Commissioning experiments

2x10PW Laser Contract

July 12th, 2013 Thales Optronique SAS and S.C. Thales System Romania SRL

2013-2017

61.5 Meuro

Project implementation

June 7th, 2013

September, 2013

current view

High-power laser source

Parameter	Range
Available outputs power and repetition rate	Two outputs with 0.1PW at 10Hz
	two outputs with 1PW at 1 Hz
	two outputs with 10PW at 1shot/min
Pulse duration	<50 fs
Strehl Ratio	>0.7
Pointing stability	<0.2 microrad
Temporal contrast in the nanosecond range	10 ¹¹ :1 for the 0.1PW outputs
	10 ¹² :1 extrapolated for the 10PW outputs
Temporal contrast in the picosecond range	10 ¹¹ :1 for the 0.1PW outputs
	10 ¹² :1 extrapolated for the 10PW outputs
External clock synchronization jitter	<200fs

Experimental set-up @ ELI-NP

Parameters of the gamma-beam

type	Units	Range
Photon energy	MeV	0.2 - 19.5
Divergence	Rad	$\leq 2.0 \text{ x } 10^{-4}$
Average Relative Bandwidth of Gamma-Ray Beam		≤5.0 x 10 ⁻³
Time-Average Spectral Density at Peak Energy	1/(s eV)	$\geq 5.0 \text{ x } 10^3$
Time-Average Brilliance at Peak Energy	1/(s mm ² mrad ² 0.1% η _{,γ})	$\geq 1.0 \ge 10^{11}$
Minimum Frequency of Gamma-Ray Macropulses	Hz	≥100

ELI-NP: the F-I-UK European proposal

European Collaboration for the proposal of the gamma-ray source:

- ✓ Italy: INFN, Sapienza
- ✓France: IN2P3, Univ. Paris
- Sud
- ✓UK: ASTeC/STFC
- ~ 80 collaborators elaborating
- the CDR/TDR

ELI-NP requirements:

Thomson/Compton Sources are electron-photon Colliders, based on the concept of *Spectral Luminosity*, *i.e.* Luminosity per unit bandwidth

$$\sigma_T = 0.67 \cdot 10^{-24} cm^2 = 0.67 \ barm$$

• Scattered flux $N_{\gamma} = \mathbf{L} \sigma_T$ σ_T

$$\Box \sigma_T = \frac{8\pi}{3} r_e^2$$

- Luminosity as in HEP collisions
 - Many photons, electrons
 - Focus tightly

$$\mathbf{L} = \frac{N_L N_{e^-}}{4 \pi \sigma_x^2} f$$

- ELI-NP

 $L = \frac{1.3 \cdot 10^{18} \cdot 1.6 \cdot 10^9}{4 \pi (0.0015 cm)^2} 3200 (sec^{-1}) = 2.5 \cdot 10^{35} cm^{-2} sec^{-1}$ cfr LHC 10³⁴ SuperB-fac 10³⁶

A r.t. RF linac vs pulsed laser source

Electron beam parameter at IP	
Energy (MeV)	180-750
Bunch charge (pC) \leq	25-400
Bunch length (μm)	100-400
ε _{n_x,y} (mm-mrad)	0.2-0.6
Bunch Energy spread (%)	0.04-0.1
Focal spot size (µm)	15-30
# bunches in the train	•31
Bunch separation (nsec)	16
energy variation along the train	0.1 %
Energy jitter shot-to-shot	0.1 %
Emittance dilution due to beam	< 10%
breakup	
Time arrival jitter (psec)	< 0.5
Pointing jitter (μm)	1

Yb:Yag Collision Laser	Low Energy Interaction	High Energy Interaction
Pulse energy (J)	0.2	0.5
Wavelength (eV)	2.4	2.4
FWHM pulse length (ps)	2-4	2-4
Repetition Rate (Hz)	100	100
M ²	•1.2	•1.2
Focal spot size w ₀ (μm)	> 25	> 25
Bandwidth (rms)	0.05 %	0.05 %
Pointing Stability (µrad)	1	1
Sinchronization to an ext. clock	< 1 psec	< 1 psec
Pulse energy stability	1 %	1 %

Fig. 197. Isometric 3D view of Building Layout of the Accelerator Hall & Experimental Areas

ELI–NP Gamma Beam System

Comparison with other LCB systems

ELI-NP Gamma Beam System

- high intensity / small emittance e⁻ beam from a warm LINAC
- very brillant high rep. rate int. laser
- small collision volume

Table 1. Comparison of performance properties of existing and upcoming γ -beam facilities.

	HIγS	HIγS2	MEGa-Ray	ELI-NP
$E_{\gamma}[MeV]$ total flux [γ /s] $\varDelta E/E$ spectral density [γ /eVs]	$\begin{array}{c} 2-100 \\ \sim 10^9 \\ 2-5 \cdot 10^{-2} \\ 10^2 \end{array}$	2-100 $5\cdot 10^{12}$ $\leq 10^{-3}$ $10^4 - 10^6$	< 8 10^{13} $\le 10^{-3}$ $10^4 \cdot 10^6$	< 19 10^{13} $\le 10^{-3}$ $10^4 \cdot 10^6$

Photonuclear Reactions

Photo-fission @ ELI-NP

Attila Krasznahorkay (ATOMKI) Fadi Ibrahim (IPN – Orsay) Dimiter L. Balabanski (ELI-NP)

Resonant tunneling through the triple humped fission barrier

(γ,f) experiment at HIγS, Csige et al., Phys. Rev. C (2013)

Ternary fission studies with ELI-NP

The two heavy fragments are sometimes accompanied by a Light Charged Particle : Ternary fission

(roughly 2 to 4 times every thousand events depending on the mass of the fissioning nucleus)

Let's see what else we can squeeze from phot

In fission fragments share about 200 MeV and have angular momentum of 20ħ. The nuclear spin ensemble has oblate orientation with respect to the beam axis. The ions are emitted in a charge state around 20⁺.

Designed experiments

- IGISOL studies of exotic nuclei
- •γ-spectroscopy of exotic nuclei

What about the refractory elements ?

ALTO, ARIEL, etc.

ELI-NP

Yield estimates

Yield: $6.2 \cdot 10^8$ f/s

with a stack of targets:

≈ 10¹⁰ f/s

Al window 19.17 mg/sm² ²³⁸U targets of 19.1 mg/sm²

H. Naik et al. / Nuclear Physics A 853 (2011) 1-25

The IGISOL project

ELIADE – detector array

- ELIADE ELI–NP Array of Detectors
- Clover detector : 4 x crystals 60x90 cm (40% intrinsic efficiency)
 - EXOGAM type
 - AC shield 2 configurations

ELIADE – detector array

- EXOGAM like Configuration
 - Most compact
 - Highest photopeak efficiency ~ 10
 - 4 Clovers @ 90 deg. @ 11 cm
 - 4 Clovers @ 135 deg. @ 11 cm
 - + 4 3"x3" LaBr₃ det. @ 90 deg.

coupling to ancillary detectors:

- fast timing with LaBr₃ det.
- selectivity with Bragg det.
- g-factors

External magnetic fields – how?

- Well known and controlled values
- Lower fields suitable for longer-lived
- Homogeneity what do we need?
 ~1 % should be OK

- Permanent NdFeB magnets ;
- Homogeneity better than 1%;
- Field ~0.1 T with possibility of reaching > 0.5 T

Hyperfine fields in Fe

G.N. Rao, Hyp. Int. 24-26 (1985) 1119-1194

g-factors of deformed nuclei in the mass A = 140 region

onset of deformation beyond the N = 82 shell
 single particle states in odd mass puelsi.

singl	<u>e-particle</u>	<u>states in o</u>	<u>dd-mass n</u>	u	clei-kel	lable confi	guration
accia	isotope	N	Ι ^π		E _i (keV)	$\tau_{1/2}$ (ns)	yield (%)
assig	¹³⁸ Xe	84	2*		588.8	2.1·10 ⁻²	5.0
rotat	¹³⁹ Cs	84			595.4		1.2
10 cu c	¹⁴⁰ Ba	84	2*		602.4	9.7·10 ⁻³	0.3
	¹³⁹ Xe	85	(9/2 ⁻)	Τ	559.7	≤ 10	4.6
	¹⁴⁰ Cs	85	1_,0_	Ι	80.1	< 2.7	2.1
-	¹⁴¹ Ba	85	(11/2 ⁻)		643.8		1.0
	¹⁴¹ Cs	86			105.9	8.7	3.3
					206.7	< 2.1	
	¹⁴¹ Xe	87	(9/2 ⁻)		111.9		1.6
	¹⁴² Cs	87	l + 3(⁻)		x + 123	11	2.4
	¹⁴³ Cs	88	9/2-		816.6		1.6
	¹⁴⁵ La	88	(11/2 ⁻)		572.4		1.6
	¹⁴⁴ Cs	89	(+1, +2)		x + 108	≤ 8	0.2
	¹⁴⁶ La	89					0.9
	¹⁴⁷ Ce	89	(9/2*)		483.6		1.0
	¹⁴⁷ La	90	(9/2 ⁻)		229.7		1.0
			(3/2+,5/2+)		167.4	3.4	
	¹⁴⁹ Ce	91	(3/2+)		133.5	0.6	0.7
			(3/2 ⁻)		245.4	≤ 0.12	

g-factors around ¹³²Sn using the IPAC technique

Fission rate (²³⁵ U)/s	Isotope	spin/parity	E-level [keV]	E-trans [keV]	Μ(λ)	T _{1/2} [ns]	Possible configuration	B _{hyp} Fe [T]
1.3E-03	¹²⁶ Sn	5-	2161.5	111.8	E1	10.8	$v s_{1/2} h_{11/2}$	8.8
1.7E-03	¹²⁸ Sn	5-	2120.9	120.5	E1	8.6	$v s_{1/2} h_{11/2}$	8.8
2.4E-03	¹³⁰ Sn	4-	2214.6	129.8	M1	0.5	$\nu d_{5/2} h_{11/2}$	8.8
1.1E-03	¹³² Sn	7+	4919.0	203.1	M1	0.062	vf _{7/2} h _{11/2} ⁻¹	8.8
1.1E-03	¹³² Sn	4-	4830.9	479.1	M1	0.026	vf _{7/2} d _{3/2} -1	8.8
1.2E-02	¹³² Sb	2+	426.1	340.5	M1(+E2)	0.015	π g _{7/2} ν d _{3/2} ⁻¹	23
1.2E-02	¹³² Sb	2 ₂ +	1078.3	992.7	M1+E2	0.026	$\pi d_{5/2} \nu d_{3/2}^{-1}$	23
2.3E-02	¹³³ Sb	11/2-	2791.3	2791.3	M2	0.0114	π h 11/2	23
1.6E-02	¹³² Te	2+	974.2	974.2	E2	0.0018	π g _{7/2} ²	68
6.0E-02	¹³⁴ Te	2+	1279.1	1279.1	E2	6.40E-04	π g _{7/2} ²	68
6.0E-02	¹³⁴ Te	6 ₂ ⁺	2397.7	706.3	M1,E2	0.016	π g _{7/2} d _{5/2}	68
6.0E-02	¹³⁴ Te	5 ₂ ⁺	2727.1	1150.8; 329.3	(M1)	0.02	π g _{7/2} d _{5/2}	68
3.7E-02	¹³⁵ Te	11/2 ⁻	1179.9	1179.9	E2	0.3	v h 9/2	68
2.0E-02	¹³⁶ Te	2+	606.6	606.5	E2	4.16E-02	$\pi f_{7/2}^{2}$	68
5.0E-02	¹³⁸ Xe	2+	588.8	588.8	E2	2.10E-02	$v g_{7/2}^2 \pi f_{7/2}^2$	155

g factors around neutron-rich N=60 using TDPAC

• she Fission	hd light c	n the inte	rnlav of	the nrata	n-neutron inter	action res	nonsil Bhyp	hle
rate (235U)/s	Isotope	spin/parity	E _x [keV]	T1/2[ns]	Possible configuration	g factor	Fe [T]	per 3xt _{1/2}
2.2E-02	⁹¹ Rb	9/2+	1134	17	π g _{9/2}	1.3	5.4	5
3.1E-02	⁹² Rb	7+	1958	7	π g _{9/2} xνd _{5/2}	0.66	5.4	5
3.1E-02	⁹² Rb	3-	284	54	π p _{3/2} xνd _{5/2}	0.2	5.4	3
3.0E-02	⁹³ Rb	27/2 ⁻	4423	111	π g _{9/2} xνg _{7/2} h _{11/2}	0.42	5.4	10
1.6E-02	⁹⁴ Rb	8+	1485	18	π g _{9/2} Xν g _{7/2}	0.87	5.4	4
1.6E-02	⁹⁴ Rb	10 -	2075	107	π g _{9/2} xνh _{11/2}	0.46	5.4	12
6.5E-03	⁹⁵ Rb	9/2+	810	95	π g _{7/2} xd _{5/2}	1.3	5.4	28
1.7E-03	⁹⁶ Rb	10 ⁻	1135	2000	π g _{9/2} xνh _{11/2}	0.46	5.4	220
1.2E-02	⁹⁵ Y	17/2-	3142	15	π f _{5/2} x6 ⁺	0.45	22.6	7
	⁹⁵ Y	21/2-	5022	65	$\pi g_{9/2} x \nu g_{7/2} h_{11/2}$	0.45	22.6	27

Research Reactor (end of decommissioning 2017)

ELI – NP (commissioning 2017)

Instrumentation (gamma beams)

NRF set-up (the ELIADE array)

- rings of segmented HPGe detectors (8-12 Ge Clovers)
- good timing detectors

Nuclear structure set-up: modular and very flexible

- high resolution neutron detection
- gamma-ray detection with medium resolution (20 LaBr₃ det.)
- high-resolution γ-ray detection (in some cases)

THGEM + DSSD detector set-up for cross section measurements

- **Gas-filled Bragg spectrometers**
- 4π DSSSD detector set-up
- **Gas-filled TPC**
- **Bubble chamber**

Production of RIB with IGISOL-type technique

Tape station and Ge array for decay studies

- Multi-reflection trap
- **Collinear laser spectroscopy beam line**

Extreme Light Infrastructu Nuclear Physics

eli

Nuclear Physics

Finally

- There are many scientific and technical challenges ahead of us. However, time is short and we need to find solutions now.
- ELI-NP is open for collaborations. We are building a user community. Formal collaborations to be established through MoUs.
- 3. Cooperation between nuclear and laser physicists needs to be established, e.g. first unify the language (!)

Job opportunities

The ELI-NP research teams will consist in **218 researchers**, **engineers and technicians** (5 heads of research and 20 senior researchers, 107 junior researchers, 50 research assistants (PhD students), 36 engineers and technicians) from 2018 on. 31 MSc and PhD students are also expected to receive some trainings with the equipment at ELI-NP every year.

http://www.eli-np.ro/jobs.php

Sectoral Operational Programme "Increase of Economic Competitiveness" "Investments for Your Future!"

Extreme Light Infrastructure - Nuclear Physics (ELI-NP) - Phase I w

www.eli-np.ro

Thank you!

Project co-financed by the European Regional Development Fund