Alpha-decay Spectroscopy of Transfermium Nuclei at JAEA

Advanced Science Research Center, Japan Atomic Energy Agency

Masato Asai

JAEA Tandem accelerator

Actinide targets available at JAEA tandem

^{241,243}Am

²⁴⁸Cm

249,251**Cf**

²³²Th
²³¹Pa
²³²U, ²³³U, ²³⁵U, ²³⁸U
²³⁷Np
²³⁹Pu, ²⁴⁴Pu

Gas-jet transport

Actinide target beam line

Current status of spectroscopic studies for superheavy nuclei

<u>Spin-parity and configuration assignments</u> are very scarce ! especially in the region of Z > 101 and N > 153

Current status of spectroscopic studies for superheavy nuclei

<u>Spin-parity and configuration assignments</u> are very scarce ! especially in the region of Z > 101 and N > 153

Current status of spectroscopic studies for superheavy nuclei

<u>Spin-parity and configuration assignments</u> are very scarce ! especially in the region of Z > 101 and N > 153

Experimental setup: Gas-jet transport + Rotating wheel system

Experimental setup (2):

Gas-jet coupled on-line isotope separator (ISOL)

Conversion electron measurement

 α -singles spectrum of ²⁵⁷No measured by using gas-jet transport

α - γ (e) coincidence result for ²⁵⁷No

M. Asai et al., PRL 95, 102502 (2005).

α - γ coincidence measurement for ²⁵⁹No

²⁴⁸Cm(¹⁸O,α3n)²⁵⁹No: 13 nb

~900 α counts for 9 days

Production of ²⁵⁹Rf

- ²⁴⁹Cf(¹³C,3n)²⁵⁹Rf ~ 6 nb
- ²⁴⁸Cm(¹⁶O,5n)²⁵⁹Rf ~ 5 nb
- ²⁵¹Cf(¹²C,4n)²⁵⁹Rf ~ 100 nb (HIVAP calc.)

It is almost impossible to obtain a large amount of isotopically enriched ²⁵¹Cf material !

Mixed Cf target

- ²⁴⁹Cf(62%), ²⁵⁰Cf(14%), ²⁵¹Cf(24%)
- Residue of 40-year-old ²⁵²Cf neutron source
- Small-size target : φ 1.4 mm x 420 μ g/cm² = 6.5 μ g
- Total radioactivity : 4.1 MBq
- 600 pnA ¹²C beam is focused on this small target

φ1.4-mm Cf target

Gamma-ray spectra in coincidence with α particles of ²⁶¹Rf and ²⁵⁷No

Discussion

- Neutron configurations in N = 155 and 157 isotones
- Neutron configurations in N > 157 nuclei

Ground-state configuration of N = 155 isotones and levels in N = 153 daughters

Inversion of 7/2+[613] and 3/2+[622] orbitals

Ground-state configuration of N=157 isotones

Neutron orbitals in N > 157 nuclei

Neutron orbitals in N > 157 nuclei

Calculated neutron orbitals

S. Cwiok et al., NPA 573 (1994) 356.

Nilsson-Strutinsky approach with an average Woods-Saxon potential

Summary

- Alpha-decay spectroscopy of ^{255,257,259}No and ^{259,261}Rf was performed at JAEA tandem accelerator using ²⁴⁸Cm and ²⁵¹Cf targets and gas-jet transport technique
- Order of neutron orbitals was found to be inverted between N=153 and N=161 nuclei, indicating the higherorder deformation change

Ideas of future plan

Mass-separated Lr isotopes are available (T.K. Sato)

Spectroscopy of Lr Fission studies of Lr E(2⁺) measurement of ${}^{260}No_{158}$ through EC decay of ${}^{260}Lr$

First Circular, February 2014

TAN 15 5th International Conference on the Chemistry and Physics of the Transactinide Elements

Urabandai, Fukushima, Japan May 25 (Monday) – 29 (Friday), 2015

Scope of the conference

This conference is the fifth in a series of conferences dedicated to the recent achievements in chemistry and physics of transactinide elements. The scientific program will cover both theories and experiments of heaviest-element synthesis, nuclear reactions, nuclear structure, chemistry, atomic properties, and other related topics. The previous TAN conferences were held in Seeheim (1999), Napa (2003), Davos (2007), and Sochi (2011).

Venue

The TAN 15 conference will be held from May 25–29, 2015, Urabandai area, the northwest part of Fukushima prefecture, J area with beautiful nature, ponds, lakes, and volcanoes.

Successful ionization and mass separation of Lr isotope

Experimental setup

High-resolution α fine-structure spectroscopy

High-resolution α -energy measurements

0+

²⁴⁸Fm

