Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission

T. Kawano, P Möller
Theoretical Division, Los Alamos National Laboratory
Combining QRPA Calculation and Statistical Decay

- **Nuclear Structure**
 - Beta-decay rate
 - Q_β from FRDM
 - GT strength from QRPA
 - Data from ENSDF

- **Nuclear De-excitation**
 - Neutron and gamma emission rate
 - Hauser-Feshbach theory
 - Discrete level data from RIPL-3 (ENSDF)
 - Integrate over all possible decay processes
 - Neutron-gamma competition included
Hauser-Feshbach Neutron and Gamma Decay Code

CGM

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA
Hauser-Feshbach Emission Probability

- **gamma-ray emission**
 \[P(\epsilon_\gamma)dE_0 = \frac{T_\gamma(E_x - E_0)\rho(Z, A, E_0)}{N} dE_0 \]

- **neutron emission**
 \[P(\epsilon_n)dE_1 = \frac{T_n(E_x - S_n - E_1)\rho(Z, A - 1, E_1)}{N} dE_1 \]

- **normalization**
 \[N = \int_0^{E_x} T_\gamma(E_x - E_0)\rho(Z, A, E_0)dE_0 \]
 \[+ \int_0^{E_x - S_n} T_n(E_x - S_n - E_1)\rho(Z, A - 1, E_1)dl \]

Integration performed only for spin and parity conserved states
Model Parameters in CGM

- **Optical potential**
 - Koning-Delaroche global optical potential parameter
 - CGM solves optical model internally to generate transmission coefficients for any compound nucleus

- **Level density**
 - Gilbert-Cameron-type composite formula (constant temperature and Fermi gas), with shell correction by Ignatyuk et al.
 - parameter systematics same as the Hauser-Feshbach code CoH3

- **Gamma-ray strength function**
 - GDR parameter systematic by RIPL-3
 - generalized Lorentzian model for E1
 - E1, M1, E2 included

- **Discrete levels**
 - RIPL-3 / ENSDF
Calculated DN Energy Spectra from Cs Isotopes

simple evaporation is used to extrapolate the spectra in ENDF/B-VII.0 (ENDF/B-VI) decay data library
Determination of Discrete/Continuum Strength

- Ba-143 Beta Delayed Gamma Spectrum
 - no delayed neutron case
 - calculated spectrum mainly from ENSDF discrete levels
 - however, those strengths are determined by the QRPA calculation

Mixing QRPA and ENSDF Strength Distributions

- Broaden QRPA strength by 100-keV Gaussian
- **When ENSDF is thought to be complete**
 - Use beta decay branching ratio data in ENSDF only
- **When ENSDF is not complete**
 - Mix ENSDF and QRPA calculation
 - Re-normalize ENSDF decay branching ratios using QRPA result
- **When no data are given in ENSDF**
 - Use QRPA result only

Sn

Br-87

Excitation Energy [MeV]

Strength Distribution [%]

Beta-Delayed Gamma-Rays from Cs Isotopes

Strong but small probability gammas from daughter nucleus (neutron emission probability is large)
Spin Selection in CGM

- **Neutron Emission Suppressed By Spin/Parity Conservation**

- No spin prediction by QRPA

- In daughter nucleus
 - 3 spin states in the continuum considered as the compound states
 - Hauser-Feshbach decay calculation to the granddaughter nucleus, including spin/parity conservation

- **87Br**
 - $\Delta I = 0, 1$

- **87Kr**
 - 6.8 MeV

- **86Kr**
 - 5.5 MeV

s-wave forbidden
Neutron and Gamma-Ray Competition

Emission Probability from Excited Kr-87 Near Sn

Neutron transmission coefficients for n+Kr86
Br-87,88 Beta-Delayed Neutron and Gamma

Br87

No gamma-ray from Br-86

Br88
Pn Changes When Gamma Channel Is Competing

- **Broadened Beta-Strength of As-85**

Impact depends on Q-value, energy available for delayed neutron, level structure in daughter nucleus

HF: 16.4%
Multiple Neutron Emission

- Several neutrons can be emitted when Sn's are small

- N/G competition at all the stages
 - Pn's are given as the calculated neutron multiplicities from each daughter nucleus
 - very time consuming calculation
Calculated Pn, Including Neutron/Gamma Competition

- As-93, Maximum Four Neutrons

HF calc.
- 1n 93%
- 2n 8.5%
- 3n 0.5%
- 4n 0%
Calculated Spectra for Multi-Neutron Emission, As-93

Gamma-ray

Neutron

Spectrum [1/MeV decay]

Emission Energy [MeV]

Los Alamos National Laboratory

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA
Calculated Decay Heating (example)

- **U-235**

Gamma Heating

Discrepancies come from difficulties in predicting level energies with the QRPA method. We are looking at +/- 100keV differences above 8 MeV!
Concluding Remarks

- More microscopic technique to calculate beta-delayed neutron and gamma-ray energy spectra
 - the FRDM and QRPA models,
 - the statistical Hauser-Feshbach model for neutron and gamma-ray emission probabilities
 - ENSDF if available

- Neutron spectra
 - calculated spectra reasonably agree with those evaluated based on experimental data

- Gamma-ray spectra
 - exact neutron and gamma-ray competition included
 - consider all daughter nuclei after multiple neutron emission
 - pure QRPA calculation tends to over-predict gamma heating

- Calculated spectrum data available through ENDF decay data library