Japan Atomic Energy Agency – Advanced Science Research Center **Research Group for Reactions involving Heavy Nuclei**

238

Andrei Andreyev^(Group Leader), Katsuhisa Nishio^(Deputy Group Leader), Hiroyuki Koura^(Researcher), Yutaka Utsuno^(Researcher), Ichiro Nishinaka^(Researcher), Kentaro Hirose^(Researcher), Hiroyuki Makii^(Researcher), Riccardo Orlandi^(Researcher), Romain Léguillon^(Special Topic Researcher), James Smallcombe^(Postdoc), Noboyuki Tamura^(Student), Ryotaro Tatsuzawa^(Student), Shinichi Mitsuoka^(Concurrent post), Hiroshi Ikezoe^(Senior Scientist), Akira Iwamoto^(Senior Scientist), Takaharu Otsuka^(Visiting Scientist), Krzysztof Rykaczewski^(Visiting Scientist), Satoshi Chiba^(Visiting Scientist), Takaharu Otsuka^(Visiting Scientist), Krzysztof Rykaczewski^(Visiting Scientist), Satoshi Chiba^(Visiting Scientist), Takaharu Otsuka^(Visiting Scientist), Krzysztof Rykaczewski^(Visiting Scientist), Satoshi Chiba^(Visiting Scientist), Takaharu Otsuka^(Visiting Scientist), Krzysztof Rykaczewski^(Visiting Scientist), Satoshi Chiba^(Visiting Scientist), Takaharu Otsuka^(Visiting Scientist), Krzysztof Rykaczewski^(Visiting Scientist), Satoshi Chiba^(Visiting Scientist), Satoshi Chiba^(Visiting Scientist), Satoshi Chiba^(Visiting Scientist), Krzysztof Rykaczewski^(Visiting Scientist), Satoshi Chiba^(Visiting Scientist), Satoshi Chiba^(Visiting Scientist), Satoshi Chiba^(Visiting Scientist), Krzysztof Rykaczewski^(Visiting Scientist), Satoshi Chiba^(Visiting Scientist), Krzysztof Rykaczewski^(Visiting Scientist), Krzysztof Rykaczewsk^(Visiting Scientist), Krzysztof Rykaczewsk^(Visiting Scientist), Krzysztof Rykaczewsk^(Visiting Scientist), Krzysztof Rykaczewsk^{(Visiting Sc}

Research Activity Summary for Fiscal Years 2010-2014 (1/2) Fission and Surrogate Reaction Studies

New Type and Region of Asymmetric Fission

It is a well known fact that actinides fission asymmetrically, while lower mass nuclei usually symmetrically. Our group pioneered the discovery of a new region of asymmetric fission, located near proton-rich Pb isotopes. Fission of ¹⁸⁰Hg was measured by populating its excited states by the β⁺/EC decay of parent ¹⁸⁰TI [a], carried out at ISOLDE, CERN. Instead of splitting into two ⁹⁰Zr isotopes, ¹⁸⁰Hg fissions with an asymmetric distribution. Potential energy landscapes were calculated to explain this unexpected finding [b]. An extended experimental campaign at ISOLDE and the JAEA Tandem permitted the study of the fissioning properties of several isotopes, shown in [c], such as 194,196 Po, 202 Rn and 190 Hg. The region highlighted in purple is where β^+ /EC delayed fission can be observed.

Fission of Neutron-Rich Nuclei populated by Multi-Nucleon Transfer Reactions

In order to study the fission of neutron-rich nuclei which cannot be accessed by usual particle-capture reactions, we developed a experimental setup to measure multinucleon-transfer-induced fission. The species and excitation energies of the fissioning isotopes produced were deduced from the detection of the corresponding light ejectile in our ΔE-E Si detector setup, [a] and [b]. Fission fragments were detected using MWPCs. In the study of the ¹⁸O + ²³⁸U reaction, the mass distributions of more than 12 isotopes, and excitation energy ranges up to 50 MeV, could be studied simultaneously [c]. Neutrons accompanied by fission were also measured with liquid scintillators. These data, which includes short-lived minor-actinides (MA), can be used as a surrogate method to study neutron-induced fission, providing nuclear data important for future Accelerator Driven Systems (ADS) and innovative fast reactors. This work is also supported by MEXT funding.

Reaction Mechanism for Heavy-Element-Synthesis

²⁷⁴Hs (Z=108) a) Compound Nucleus 238U Energy - ⁵⁰ - **Dotential** ttongation -0.5 Mass Asymmetry

Heavy-ion fusion using actinide nuclei is nowadays a widely-used, key reaction to produce super-heavy elements (SHE) [a].

The reaction mechanism was studied by detecting fission fragments at the JAEA Tandem. Mass distributions were measured for different beams and incident energies [b]. With calculations based on a fluctuation-dissipation model, the competition between fusion and quasifission was determined quantitatively from the measured spectra. We revealed that the **orientation of the deformed** target nucleus in the entrance channel affects the fusion probability, and proposed a method to estimate production cross sections of SHE.

K. Nishio et al., Phys. Rev. C 82, 024611 (2010); K. Nishio et al., Phys. Rev. C 82, 044604 (2010); K. Nishio et al., Phys. Rev. C 86, 034608 (2012)