多極子秩序の微視的理論

日本原子力研究開発機構 先端基礎研究センター 久保勝規

f電子系の多極子秩序に対する微視的理論を紹介する。そのために、まず各イオンにおけるf電子の 状態の記述方法として標準的な LS 結合描像と j-j結合描像について述べる。特に2電子状態について、 それらの類似点と相違点を議論する。また、f電子もしくはホールが少ない場合には、この2つの描像の 与える電子状態は似ていることも指摘する。その後に j-j結合描像に基づいた多極子秩序の理論研究を紹 介する。

1 はじめに

原子における電子の軌道状態は、原子の球対称性のために縮退を持つ。例えば*d*軌道は、スピン・軌道 相互作用を無視すると、スピン自由度を含めて 10 重に縮退している。しかし、結晶中では周りのイオン からの静電ポテンシャルなどのため、対称性が球対称から低下し電子の軌道状態に関する縮退は解ける。 そのため、十分低温ではスピンの自由度のみを考慮すれば良いことが多い。この残された自由度であるス ピン自由度によって引き起こされる多彩な磁性現象は我々の興味を引いてきた。一方、立方晶のように対 称性が高い物質系では軌道縮退が残り、軌道自由度がその物性に大きな影響を与える場合がある。その軌 道自由度のある系は近年盛んに研究され、特に軌道縮退が自発的に解ける軌道秩序転移は、*d*電子系や*f* 電子系について精力的に調べられてきた [1–3]。

最近では軌道自由度のある f 電子系において、通常の磁気秩序や軌道秩序とは異なる秩序状態の可能性 が議論されている。それは八極子や十六極子などの多極子の秩序である^{*1}。f 電子系では強いスピン・軌 道相互作用のために、電子状態をスピン状態と軌道状態に分けて記述するのは困難であり、良い量子数と なる全角運動量一定の状態空間を記述する必要がある。その全角運動量一定の状態を系統的に分類する には、多極子の自由度を用いるのが便利である。双極子(二極子)の秩序は通常の磁気秩序であり、電荷 分布の異方性を記述する四極子の秩序は通常の軌道秩序である。さらに高次の多極子である八極子は、磁 気モーメント分布の異方性を記述するものである。この八極子の秩序が Ce_xLa_{1-x}B₆ [9–12] や NpO₂ [13] で実現していると考えられている。最近では PrRu₄P₁₂ に対して、さらに高次の十六極子の秩序の可能性 も議論されている [14,15]。このような多極子秩序の起源を理解するためには、現象論に留まらず微視的 な理論を構築する必要があり、最近そのような試みも行われるようになった。

本稿では、そのような多極子秩序の微視的理論を紹介する。そのためにまず、第2節で各イオンにお ける f 電子状態の記述方法(近似方法)として代表的な LS 結合描像と j-j 結合描像について述べる。特 に2電子状態について、これらの描像の与える電子状態の類似点と相違点について議論する。次に第3 節で多極子モーメントについて述べる。そして、第4節で j-j 結合描像を用いた多極子相互作用の導出方 法と導かれる多極子秩序状態[16–19]について述べる。また第5節で、瀧本による PrRu₄P₁₂に対する十 六極子秩序の微視的理論[15]も簡単に紹介する。最後に第6節で、本稿のまとめと今後の課題について 述べる。

^{*1} 実は d 電子系においても八極子秩序の可能性が議論されていたことがある。その秩序状態は e_g 軌道の $x^2 - y^2$ 軌道と $3z^2 - r^2$ 軌道を複素係数で重ね合わせた状態で、スピンとは関係なく軌道状態のみで八極子モーメントを持つ状態である。しかし、 e_g 軌道のあるモデルに平均場近似を適用すると確かに八極子秩序状態が得られるのであるが [4-7]、平均場近似を超えた揺らぎに対してその秩序状態は極めて弱いので [8]、その実現の可能性は低い。

2 各イオンにおける *f* 電子状態の記述

1 つの f 電子はスピン自由度も含めると 14 の状態を取りうる。2 電子状態は 14C₂ = 91 通りで、電子の数が増えると取りうる状態の数はさらに増える。これは 1 イオンに対する状態の数であるから、イオンを格子上に並べたときには、取りうる状態の数は 1 イオンの状態数の格子数乗となり莫大なものとなる。そのため、実際に格子上の f 電子系の状態を記述するためには、何らかの近似を用いて 1 イオンにおける状態数を制限する必要がある。

この節では、その代表的な近似方法として、LS 結合描像と j-j 結合描像を紹介する。そのためにまず、 結晶場のない自由な 1 イオンの電子状態を考える。自由な 1 イオンの特徴的なエネルギーは、クーロン 相互作用とスピン・軌道相互作用のエネルギーで、それぞれシンボリックに"U"、" λ "と表すことにする。 LS 結合描像は $U \gg \lambda$ の極限であり、j-j 結合描像は $\lambda \gg U$ の極限である。f 電子系では $U \sim 1-10$ eV、 $\lambda \sim 0.1-0.3$ eV であるので [2]、LS 結合描像の方が良い近似になっていることが多い。この 2 つの描像 (近似)の与える基底状態がどの程度似ていて、どの程度異なっているかについて 2 電子状態を中心とし て述べる。また、これらの描像において基底多重項のみを考えた場合に、磁気モーメントや結晶場ポテン シャルがどのように与えられるかについても述べる。

結晶中のイオンを考える場合には、周りのイオンによる結晶場ポテンシャルの影響も考慮しなくてはな らない。結晶場ポテンシャルの大きさは f 電子系では大きい場合でも 0.01–0.1 eV 程度であり、LS 結合 描像では結晶場のない場合の基底多重項に制限した上で、摂動的に取り扱うことが多い。j-j 結合描像で の結晶場ポテンシャルの取り扱い方については第 2.6 節で述べる。

2.1 f¹の状態

 f^1 の状態は 14 状態あるが、スピン・軌道相互作用によって全角運動量 j = 5/2の状態と j = 7/2の 状態にわかれる。エネルギーの低い状態は j = 5/2の状態である。以下では、1 電子の軌道角運動量は l = 3、1 電子のスピン角運動量は s = 1/2 とする。全角運動量が j でその z成分が mの状態は

$$|jm\rangle = \sum_{l_z,s_z} |ll_z; ss_z\rangle \langle ll_z; ss_z|jm\rangle = \sum_{l_z,s_z} c^{\dagger}_{l_zs_z} |0\rangle \langle ll_z; ss_z|jm\rangle \equiv f^{\dagger}_{jm} |0\rangle,$$
(1)

で与えられる。ここで、 $\langle ll_z; ss_z | jm \rangle$ はクレブシュ・ゴルダン (Clebsch-Gordan) 係数、 $|0\rangle$ は電子の真空状態、 $c_{l_ss_z}^{\dagger}$ は軌道角運動量の z 成分が l_z でスピン角運動量の z 成分が s_z の f 電子の生成演算子、 f_{jm}^{\dagger} は全角運動量 j でその z 成分が m の f 電子の生成演算子である。

2.2 *f²* の状態

次に f² の状態を LS 結合描像および j-j 結合描像を用いて構成する。これらの描像での f² の状態の構成の仕方を図 1 に模式的に示す。

LS 結合描像ではまず強いクーロン相互作用を考慮しそのエネルギーを低くするために、フント則に 従って全軌道角運動量 *L* = 5、全スピン角運動量 *S* = 1 の状態を作る。

$$|LL_{z}; SS_{z}\rangle = \sum_{l_{1}, l_{2}, s_{1}, s_{2}} \frac{1}{\sqrt{2}} c^{\dagger}_{l_{1}s_{1}} c^{\dagger}_{l_{2}s_{2}} |0\rangle \langle ll_{1}; ll_{2} | LL_{z}\rangle \langle ss_{1}; ss_{2} | SS_{z}\rangle.$$
⁽²⁾

ここで係数 1/√2 は電子が区別できないことからくる規格化因子である。これらの状態に制限した上で、

図1 f^1 および、j-j結合描像とLS結合描像による f^2 のエネルギーレベルスキーム。

スピン・軌道相互作用を取り入れて、そのエネルギーの低い全角運動量 J = L - S = 4 の状態を構成する。 以下、特に断らない限り L = 5、S = 1、J = 4 とする。全角運動量の z成分が M の状態は次の式で与えられる。

$$|JM(LS)\rangle = \sum_{L_z,S_z} |LL_z; SS_z\rangle \langle LL_z; SS_z|JM\rangle$$

$$= \sum_{\substack{L_z,S_z\\l_1,l_2,s_1,s_2}} \frac{1}{\sqrt{2}} c^{\dagger}_{l_1s_1} c^{\dagger}_{l_2s_2} |0\rangle \langle ll_1; ll_2|LL_z\rangle \langle ss_1; ss_2|SS_z\rangle \langle LL_z; SS_z|JM\rangle.$$
(3)

LS 結合描像では、最初のステップ式 (2) の時点で多体状態を構成していることが特徴的である。

j-j結合描像ではスピン・軌道相互作用の大きい極限を考え、 f^1 の場合に構成したj = 5/2の状態のみから2電子状態を構成する。つまり、j = 7/2の状態を捨てた状態空間で多体状態を作る。以下では、特に断らない限り1電子の全角運動量はj = 5/2とする。j = 5/2の状態からクーロン相互作用を取り入れて、そのエネルギーの低い状態を作ると次のようなJ = 4の状態になる。

$$|JM(j-j)\rangle = \sum_{m_1,m_2} \frac{1}{\sqrt{2}} f^{\dagger}_{jm_1} f^{\dagger}_{jm_2} \langle jm_1; jm_2 | JM \rangle$$

$$= \sum_{\substack{m_1,m_2\\l_1,s_1,l_2,s_2}} \frac{1}{\sqrt{2}} c^{\dagger}_{l_1s_1} c^{\dagger}_{l_2s_2} \langle ll_1; ss_1 | jm_1 \rangle \langle ll_2; ss_2 | jm_2 \rangle \langle jm_1; jm_2 | JM \rangle.$$
(4)

j-j 結合描像の場合は、最初のステップは式 (1) であり、その時点では 1 電子状態を作っているに過ぎない点が特徴である。

LS 結合描像と j-j 結合描像で得られた J=4 の状態の重なりは

$$\langle JM(j-j)|JM(LS)\rangle = \sum_{\substack{m_1,m_2,L_z,S_z\\l_1,s_1,l_2,s_2}} \langle JM|jm_1; jm_2\rangle \langle jm_1|ll_1; ss_1\rangle \langle jm_2|ll_2; ss_2\rangle \times \langle ll_1; ll_2|LL_z\rangle \langle ss_1; ss_2|SS_z\rangle \langle LL_z; SS_z|JM\rangle$$

$$= \sqrt{\frac{110}{147}} = 0.865,$$

$$(5)$$

となる*²。LS 結合描像と *j*-*j* 結合描像という両極端の近似で得られた 2 電子状態はそれほど大きくは異 なっていないことが分かる。なお、全ての状態を残してクーロン相互作用とスピン・軌道相互作用の大き さの比を変えていくと、そこで得られる状態と LS 結合描像での状態との重なりは、1 から 0.865 に連続 的に変化する [20]。

2.3 磁気モーメントと g 因子

LS 結合描像や j-j 結合描像で得られる電子状態に対して、磁気モーメントがどのように与えられるか を調べる。磁気モーメントの z 成分は

$$M_z = -\mu_{\rm B}(\hat{l}_z + 2\hat{s}_z),\tag{6}$$

で与えられる。ここで、 μ_B はボーア磁子であり、 \hat{l}_z と \hat{s}_z はそれぞれ、軌道角運動量とスピン角運動量の z成分の演算子である。全角運動量 J が一定の状態空間で、実際に磁気モーメントなどのテンソル演算子 の行列要素を計算するには、ウィグナー・エッカルト (Wigner-Eckart)の定理の応用の一つである等価演 算子の方法を用いるのが便利である [21]。等価演算子の方法を用いれば、テンソル演算子の行列要素を 直接求める代わりに、計算しやすい別のテンソル演算子の行列要素を求めればすむ。例えば、 M_z の行列 要素を計算するには、行列要素全体にかかる比例係数を除いて、 J_z の行列要素を計算すれば良い。この 比例係数は一般のテンソル演算子に対しては還元行列要素と呼ばれ、磁気モーメントに対しては $-\mu_B$ を 除いた数を g 因子と呼ぶ。

 f^1 の場合は \hat{l}_r の行列要素が

$$\langle jm|\hat{l}_{z}|jm'\rangle = \sum_{l_{z},s_{z},l'_{z}} \langle jm|ll_{z}; ss_{z}\rangle \langle ll_{z}|\hat{l}'_{z}|l'_{z}\rangle \langle ll'_{z}; ss_{z}|jm'\rangle$$

$$= \sum_{l_{z},s_{z}} |\langle jm|ll_{z}; ss_{z}\rangle|^{2} l_{z}\delta_{mm'} = \frac{8}{7}m\delta_{mm'},$$

$$(7)$$

ŝ_zの行列要素が

$$\langle jm|\hat{s}_{z}|jm'\rangle = \sum_{l_{z},s_{z},s'_{z}} \langle jm|ll_{z};ss_{z}\rangle\langle ss_{z}|\hat{s}_{z}|ss'_{z}\rangle\langle ll_{z};ss'_{z}|jm'\rangle$$

$$= \sum_{l_{z},s_{z}} |\langle jm|ll_{z};ss_{z}\rangle|^{2}s_{z}\delta_{mm'} = -\frac{1}{7}m\delta_{mm'},$$
(8)

*² ほとんど定義と言っていいのだが、式 (5) は 9-*j* 記号と呼ばれるもので書き表すことが出来て $\langle JM(j-j)|JM(LS) \rangle = (2j+1)\sqrt{2L+1}\sqrt{2S+1} \begin{cases} l & l & L \\ s & s & S \\ j & j & J \end{cases}$, となる。 となるので、j = 5/2の状態空間では

$$M_{z} = -\mu_{\rm B}(\hat{l}_{z} + 2\hat{s}_{z}) \Longrightarrow -\mu_{\rm B}\left[\frac{8}{7} - \frac{2}{7}\right]j_{z} = -\mu_{\rm B}\frac{6}{7}j_{z} = -g_{j}\mu_{\rm B}j_{z},\tag{9}$$

となる。ここで "⇒→" は制限した状態空間では、この矢印の右側の等価演算子で置き換えてよいという ことを示している。 $g_i = 6/7$ が j = 5/2 の 1 電子状態に対する g 因子である。

同様な計算によって、j = 7/2の1電子状態に対するg因子は $g_{j=7/2} = 8/7$ となることも示すことができる。

次に f^2 の J = 4の状態に対する g 因子を求める。

 $=-rac{1}{5}M\delta_{MM'},$

LS 結合描像では

$$\langle JM(LS)|\hat{l}_{z}|JM'(LS)\rangle = \sum_{\substack{L_{z},S_{z}\\l_{1},l_{2},s_{1},s_{2}}} |\langle ll_{1}; ll_{2}|LL_{z}\rangle\langle ss_{1}; ss_{2}|SS_{z}\rangle\langle LL_{z}; SS_{z}|JM\rangle|^{2}(l_{1}+l_{2})\delta_{MM'}$$

$$= \sum_{\substack{L_{z},S_{z}\\l_{1},l_{2},s_{1},s_{2}}} |\langle LL_{z}; SS_{z}|JM\rangle|^{2}L_{z}\delta_{MM'}\sum_{l_{1},l_{2}} |\langle ll_{1}; ll_{2}|LL_{z}\rangle|^{2}\sum_{s_{1},s_{2}} |\langle ss_{1}; ss_{2}|SS_{z}\rangle|^{2}$$

$$= \sum_{\substack{L_{z},S_{z}\\l_{z},S_{z}}} |\langle LL_{z}; SS_{z}|JM\rangle|^{2}L_{z}\delta_{MM'}$$

$$= \frac{6}{5}M\delta_{MM'},$$

$$\langle JM(LS)|\hat{s}_{z}|JM'(LS)\rangle = \sum_{\substack{L_{z},S_{z}\\l_{1},l_{2},s_{1},s_{2}}} |\langle ll_{1}; ll_{2}|LL_{z}\rangle\langle ss_{1}; ss_{2}|SS_{z}\rangle\langle LL_{z}; SS_{z}|JM\rangle|^{2}\delta_{MM'}(s_{1}+s_{2})$$

$$= \sum_{\substack{L_{z},S_{z}\\l_{1},l_{2},s_{1},s_{2}}} |\langle LL_{z}; SS_{z}|JM\rangle|^{2}S_{z}\delta_{MM'}\sum_{l_{1},l_{2}} |\langle ll_{1}; ll_{2}|LL_{z}\rangle|^{2}\sum_{s_{1},s_{2}} |\langle ss_{1}; ss_{2}|SS_{z}\rangle|^{2}$$

$$= \sum_{\substack{L_{z},S_{z}\\l_{z},S_{z}}} |\langle LL_{z}; SS_{z}|JM\rangle|^{2}S_{z}\delta_{MM'}$$

$$(11)$$

となるので、

$$M_{z} = -\mu_{\rm B}(\hat{l}_{z} + 2\hat{s}_{z}) \Longrightarrow -\mu_{\rm B}\left[\frac{6}{5} - \frac{2}{5}\right]J_{z} = -\mu_{\rm B}\frac{4}{5}J_{z} = -g_{J}\mu_{\rm B}J_{z},$$
(12)

となり、g因子は $g_J = 4/5$ である*3。

j-j 結合描像の場合には

$$\langle JM(j-j)|(\hat{l}_{z}+2\hat{s}_{z})|JM'(j-j)\rangle$$

$$= \sum_{m_{1},m_{2},m'_{1},m'_{2}} \langle JM|jm_{1};jm_{2}\rangle \frac{1}{2} \langle 0|f_{jm_{2}}f_{jm_{1}}(\hat{l}_{z}+2\hat{s}_{z})f^{\dagger}_{jm'_{1}}f^{\dagger}_{jm'_{2}}|0\rangle \langle jm'_{1};jm'_{2}|JM'\rangle$$

$$= \sum_{m_{1},m_{2}} |\langle jm_{1};jm_{2}|JM\rangle|^{2}g_{j}(m_{1}+m_{2})\delta_{MM'}$$

$$= g_{j}M\delta_{MM'}\sum_{m_{1},m_{2}} |\langle jm_{1};jm_{2}|JM\rangle|^{2}$$

$$= g_{j}M\delta_{MM'},$$

$$(13)$$

^{*&}lt;sup>3</sup> g 因子は g_J と書き表すのが慣例であるが、LS 結合描像だけを考える場合でも、J の値だけでは決まらない。例えば、 f^1 と f^5 の基底状態は J = 5/2 であるが、g 因子の値は異なる。これは後に述べるスティーブンス因子についてもあてはまる。

図 2 LS 結合描像と j-j 結合描像での g 因子。LS 結合描像での値は適当な文献に表として載っている。例えば [22]。

となり、g 因子は1電子の場合と変わらない。これは、j-j 結合描像の場合には多電子状態を作るときに、 1電子状態としてj = 5/2の状態のみを考える、つまり同じg 因子を持つ1電子状態のみを考えるためで ある。この事情はJの値を変えてもf電子の数が増えても変わらず、式(13)においてクレブシュ・ゴル ダン係数を適当なユニタリー行列に置き換えれば、同じ結果が得られる。ただし、f電子の数が6の場合 にはj = 5/2の軌道がすべて埋められてしまうので、磁気モーメントはゼロであり、f電子の数が7以上 の場合にはj = 7/2の状態からの寄与のみを考えればよいのでg 因子もj = 7/2のものになる。

図 2 に LS 結合描像と j-j 結合描像での g 因子の値を示す。 f^1 、 f^{13} の場合はそれぞれ 1 電子、1 ホー ルの状態であり、f 電子間のクーロン相互作用は関係なくなるので、どちらの描像でも同じ値になる。ま た、f⁶ はどちらの描像でも J = 0 である。LS 結合描像では、まず全軌道角運動量と全スピン角運動量が それぞれできるだけ大きくなるように多電子状態を組む。そのため、 $\hat{l}_z \geq \hat{s}_z$ のそれぞれの還元行列要素 の大きさは、j-j 結合描像の場合よりも大きくなる。また、 $j_z = \hat{l}_z + \hat{s}_z$ の還元行列要素はどちらの描像で も 1 である。よって、2 つの描像での $\hat{l}_z + 2\hat{s}_z = (\hat{l}_z + \hat{s}_z) + \hat{s}_z$ の還元行列要素、つまり g 因子の大きさの大 小は \hat{s}_z の還元行列要素の符号で決まる。スピン・軌道相互作用のために、f 電子の数が 5 以下の場合は \hat{s}_z の還元行列要素は負である。そのため、f 電子の数が 5 以下の場合は j-j 結合描像の方が g 因子は大き い。逆に f 電子の数が 7 以上の場合は LS 結合描像の方が g 因子は大きい。図 2 を見ると、f 電子また はホールの数が多い場合には、多電子状態の構成の仕方による違いが顕著になることがわかる。ただし、 電子やホールの数が 1 の近くでは、両描像の違いはそれほど大きくないこともわかる。

2.4 結晶場ポテンシャルとスティーブンス因子

次に立方晶(O_h)での結晶場ポテンシャルを考える。それは次の式で与えられる。

$$H_{\rm CEF} = A_4[O_4^0(r) + 5O_4^4(r)] + A_6[O_6^0(r) - 21O_6^4(r)].$$
⁽¹⁴⁾

ここで、

$$O_4^0(\mathbf{r}) = 35z^4 - 30r^2z^2 + 3r^4, \tag{15}$$

$$O_4^4(\mathbf{r}) = x^4 - 6x^2y^2 + y^4,\tag{16}$$

$$O_6^0(\mathbf{r}) = 231z^6 - 315z^4r^2 + 105z^2r^4 - 5r^6,$$
(17)

$$O_6^4(\mathbf{r}) = (11z^2 - r^2)(x^4 - 6x^2y^2 + y^4), \tag{18}$$

であり、A₄ と A₆ が物質に依存する結晶場パラメータである。この結晶場ポテンシャルを等価演算子で 書き表すときの還元行列要素を求めたい。まず、軌道角運動量の固有状態に対して、還元行列要素を求め る。結晶場ポテンシャルはスピンには依存しないので、軌道角運動量の固有状態に対して還元行列要素を 求めておけば、他の場合の還元行列要素もそれから求めることが出来る。

まず座標演算子の4次に比例する項を考える。その還元行列要素を次のように定義する。

$$O_4^0(\mathbf{r}) = 35z^4 - 30r^2z^2 + 3r^4$$

$$\implies \beta_l \langle r^4 \rangle [35\hat{l}_z^4 - 30l(l+1)\hat{l}_z^2 + 25\hat{l}_z^2 - 6l(l+1) + 3l^2(l+1)^2] \equiv \beta_l \langle r^4 \rangle O_4^0(l=3).$$
(19)

ここで、 $O_4^0(l=3)$ が等価演算子で、 β_l が4次の項に対するスティーブンス(Stevens)因子と呼ばれる。 $\langle r^4 \rangle$ の定義は以下の式 (21) で与える。座標演算子を用いて表される演算子に対する等価演算子(対応す るテンソル演算子)を作る場合には角運動量の交換関係がゼロでないために対称化しなければならない。 例えば、 $xy \Longrightarrow (\hat{l}_x \hat{l}_y + \hat{l}_y \hat{l}_x)/2$ (比例係数を除いて)。そのため、 $O_4^0(l=3)$ などの表式はやや複雑なものに なっている。このような等価演算子の具体的な表式やその行列要素は Hutchings によって表にまとめら れている [22]。

では、実際に還元行列要素の値、つまりスティーブンス因子を求める。軌道角運動量l = 3、そのz成分が l_r の波動関数を次のように、動径成分と角度成分に分ける。

$$\phi_{ll_z}(\boldsymbol{r}) = R(\boldsymbol{r})Y_{ll_z}(\theta,\varphi). \tag{20}$$

 $Y_{ll_z}(\theta, \varphi)$ は球面調和関数である。ここで、還元行列要素だけを求めればよいので、 $l_z = 0$ の状態間の行列 要素を求める。

$$\int dr^{3}\phi_{l0}^{*}(r)(35z^{4} - 30r^{2}z^{2} + 3r^{4})\phi_{l0}(r)$$

$$= \int dr^{3}\phi_{l0}^{*}(r)\frac{16\sqrt{\pi}}{3}r^{4}Y_{40}(\theta,\varphi)\phi_{l0}(r)$$

$$= \int drr^{2} \times r^{4}R^{2}(r) \times \frac{16\sqrt{\pi}}{3} \int d(\cos\theta)d\varphi Y_{l0}^{*}(\theta,\varphi)Y_{40}(\theta,\varphi)Y_{l0}(\theta,\varphi)$$

$$= \langle r^{4} \rangle \frac{16\sqrt{\pi}}{3} \sqrt{\frac{9}{4\pi}}c^{4}(30,30) = \langle r^{4} \rangle \times 8 \times \frac{2}{11} = \langle r^{4} \rangle \times \frac{16}{11}.$$
(21)

ここで、

$$c^{k}(ll_{z},l'l'_{z}) \equiv \sqrt{\frac{4\pi}{2k+1}} \int d(\cos\theta)d\varphi Y^{*}_{ll_{z}}(\theta,\varphi)Y_{kl_{z}-l'_{z}}(\theta,\varphi)Y_{l'l'_{z}}(\theta,\varphi),$$
(22)

であり、その値は例えば [21] を参照。式 (21) が式 (19) で $\hat{l}_z = 0$ としたものと等しくなる。それは、

$$\beta_l \langle r^4 \rangle O_4^0(l=3)_{00} = \beta_l \langle r^4 \rangle (-6 \cdot 3 \cdot 4 + 3 \cdot 3^2 \cdot 4^2) = \beta_l \langle r^4 \rangle \times 2^3 \cdot 3^2 \cdot 5,$$
(23)

である。ここで、 $O_4^0(l=3)_{mm'}$ は $O_4^0(l=3)$ の $l_z = m$ と $l_z = m'$ の状態間の行列要素である。よって、スティーブンス因子は

$$\beta_l = \frac{16}{11} \times \frac{1}{2^3 \cdot 3^2 \cdot 5} = \frac{2}{3^2 \cdot 5 \cdot 11}.$$
(24)

結晶場に現れる6次の項も同様に次のような等価演算子で表すことが出来る。

$$O_{6}^{0}(\mathbf{r}) = 231z^{6} - 315z^{4}r^{2} + 105z^{2}r^{4} - 5r^{6}$$

$$\implies \gamma_{l} \langle r^{6} \rangle [231\hat{l}_{z}^{6} - 315l(l+1)\hat{l}_{z}^{4} + 735\hat{l}_{z}^{4} + 105l^{2}(l+1)^{2}\hat{l}_{z}^{2} - 525l(l+1)\hat{l}_{z}^{2} + 294\hat{l}_{z}^{2}$$

$$- 5l^{3}(l+1)^{3} + 40l^{2}(l+1)^{2} - 60l(l+1)]$$

$$\equiv \gamma_{l} \langle r^{6} \rangle O_{6}^{0}(l=3).$$
(25)

その還元行列要素は4次の項と同様に計算することが出来て、スティーブンス因子 γιは

$$\gamma_l = -\frac{2^2}{3^3 \cdot 11 \cdot 13}.$$
(26)

このようにして求めたスティーブンス因子と等価演算子を用いれば、*l*=3に対する結晶場ポテンシャルは次のように書き表すことが出来る。

$$H_{\text{CEF}} = A_4[O_4^0(r) + 5O_4^4(r)] + A_6[O_6^0(r) - 21O_6^4(r)]$$

$$\implies B_4(l=3)[O_4^0(l=3) + 5O_4^4(l=3)] + B_6(l=3)[O_6^0(l=3) - 21O_6^4(l=3)].$$
(27)

ここで等価演算子は式(19)と式(25)で定義したものと、

$$O_{4}^{4}(l=3) = (\hat{l}_{+}^{4} + \hat{l}_{-}^{4})/2,$$

$$O_{6}^{4}(l=3) = [11\hat{l}_{z}^{2} - l(l+1) - 38](\hat{l}_{+}^{4} + \hat{l}_{-}^{4})/4 + (\hat{l}_{+}^{4} + \hat{l}_{-}^{4})[11\hat{l}_{z}^{2} - l(l+1) - 38]/4,$$
(28)
(29)

である。ここで $\hat{l}_{\pm} = \hat{l}_x \pm i \hat{l}_y$ である。 $B_4 \ge B_6$ は次の式で与えられる。

$$B_4(l=3) = \beta_l \langle r^4 \rangle A_4, \tag{30a}$$

$$B_6(l=3) = \gamma_l \langle r^{\mathsf{b}} \rangle A_6. \tag{30b}$$

 $\langle r^4 \rangle$ や $\langle r^6 \rangle$ の値を求めるのは困難なので、実際に実験結果を解析する場合は通常 B_4 と B_6 が結晶場のパラメータとなる。

次に、スピン・軌道相互作用を考えて j = 5/2 の f^1 の状態に対する結晶場ポテンシャルの還元行列要素を求める。そのためには、l = 3 に対する等価演算子 $O_4^0(l = 3)$ や $O_6^0(l = 3)$ を j = 5/2 の状態に制限した場合に、j = 5/2 に対する等価演算子の何倍になるかを調べれば良い。

$$\langle jm | O_4^0(l=3) | jm' \rangle$$

$$= \sum_{l_z, s_z, l'_z, s'_z} \langle jm | ll_z; ss_z \rangle O_4^0(l=3)_{l_z l'_z} \delta_{s_z s'_z} \langle ll'_z; ss'_z | jm' \rangle$$

$$= \frac{11}{7} O_4^0(j=5/2)_{mm'}.$$
(31)

ここで、 $O_4^0(j = 5/2)$ は式 (19)の等価演算子 $O_4^0(l = 3)$ の軌道角運動量 lを全角運動量 j = 5/2 で置き換えたものである。同じ計算を 6 次の項に対して行うと、その行列要素はゼロになる。そもそも、k 次のテンソル演算子は $k \leq 2j$ でないと行列要素はゼロになるのでこれは当然である。これらから、l = 3の結晶

場を出発点にした場合、j = 5/2に対する結晶場は $B_4(j = 5/2) = (11/7) \times B_4(l = 3)$ 、 $B_6(j = 5/2) = 0$ として、

$$H_{\text{CEF}} \Longrightarrow B_4(j=5/2)[O_4^0(j=5/2)+5O_4^4(j=5/2)] + B_6(j=5/2)[O_6^0(j=5/2)-21O_6^4(j=5/2)], (32)$$

で与えられる。また、等価であるがスティーブンス因子で表すと、

$$\beta_j = \frac{11}{7} \beta_l = \frac{2}{3^2 \cdot 5 \cdot 7},$$
(33)
 $\gamma_j = 0,$
(34)

となる。

次に f^2 で J = 4 の場合を考える。

LS 結合描像の場合には

$$\langle JM(LS)|O_{4}^{0}(l=3)|JM'(LS)\rangle$$

$$= \frac{1}{2} \sum_{\substack{L_{z},S_{z},L'_{z},S'_{z}\\l_{1},l_{2},s_{1},s_{2},l'_{1},l'_{2},s'_{1},s'_{2}}} \langle JM|LL_{z};SS_{z}\rangle\langle SS_{z}|ss_{1};ss_{2}\rangle\langle LL_{z}|ll_{1};ll_{2}\rangle$$

$$\times \langle 0|c_{l_{2}s_{2}}c_{l_{1}s_{1}}O_{4}^{0}(l=3)c_{l'_{1}s'_{1}}^{\dagger}c_{l'_{2}s'_{2}}^{\dagger}|0\rangle$$

$$\times \langle ll'_{1};ll'_{2}|LL'_{z}\rangle\langle ss'_{1};ss'_{2}|SS'_{z}\rangle\langle LL'_{z};SS'_{z}|JM'\rangle$$

$$= 2 \sum_{\substack{L_{z},S_{z},L'_{z}\\l_{1},l_{2},s_{1},s_{2},l'_{1}}} \langle JM|LL_{z};SS_{z}\rangle\langle SS_{z}|ss_{1};ss_{2}\rangle\langle LL_{z}|ll_{1};ll_{2}\rangle$$

$$\times \langle 0_{4}^{0}(l=3)_{l_{1}l'_{1}}$$

$$\times \langle ll'_{1};ll'_{2}|LL'_{z}\rangle\langle ss_{1};ss_{2}|SS_{z}\rangle\langle LL'_{z};SS_{z}|JM'\rangle$$

$$= -\frac{2}{11}O_{4}^{0}(J=4)_{MM'}.$$

$$(35)$$

6 次の項も同様に求めることができて、結晶場パラーメタは $B_4(J = 4; LS) = (-2/11) \times B_4(l = 3)$ 、 $B_6(J = 4; LS) = (-68/1155) \times B_6(l = 3)$ となる。スティーブンス因子で表すと、

$$\beta_J = -\frac{2}{11}\beta_l = -\frac{2^2}{3^2 \cdot 5 \cdot 11^2},$$
(36)

$$\gamma_J = -\frac{68}{1155}\gamma_l = \frac{2^4 \cdot 17}{3^4 \cdot 5 \cdot 7 \cdot 11^2 \cdot 13}.$$
(37)

j-j 結合の場合も同様に計算すると、

$$\langle JM(j-j)|O_{4}^{0}(l=3)|JM'(j-j)\rangle$$

$$= \sum_{m_{1},m_{2},m'_{1},m'_{2}} \langle JM|jm_{1}; jm_{2}\rangle \frac{1}{2} \langle 0|f_{jm_{2}}f_{jm_{1}}O_{4}^{0}(l=3)f_{jm'_{1}}^{\dagger}f_{jm'_{2}}^{\dagger}|0\rangle \langle jm'_{1}; jm'_{2}|JM'\rangle$$

$$= 2 \sum_{m_{1},m_{2},m'_{1}} \langle JM|jm_{1}; jm_{2}\rangle \langle jm_{1}|O_{4}^{0}(l=3)|jm'_{1}\rangle \langle jm'_{1}; jm_{2}|JM'\rangle$$

$$= 2 \sum_{m_{1},m_{2},m'_{1}} \langle JM|jm_{1}; jm_{2}\rangle \langle jm_{1}|ll_{z}; ss_{z}\rangle O_{4}^{0}(l=3)_{l_{z}l'_{z}} \langle ll'_{z}; ss_{z}|jm'_{1}\rangle \langle jm'_{1}; jm_{2}|JM'\rangle$$

$$= -\frac{11}{49}O_{4}^{0}(J=4)_{MM'}.$$

$$(38)$$

図3 LS 結合描像と j-j 結合描像でのスティーブンス因子。

6次の項は j = 5/2の1電子状態に対してはゼロであったので、それらから作った多電子状態でも6次の 項はゼロになる。よって、結晶場パラメータは $B_4(J = 4; j-j) = (-11/49) \times B_4(l = 3), B_6(J = 4; j-j) = 0$ となる。スティーブンス因子で表すと、

$$\tilde{\beta}_J = -\frac{11}{49}\beta_l = -\frac{2}{3^2 \cdot 5 \cdot 7^2},$$
(39)
 $\tilde{\gamma}_J = 0.$
(39)

ここでは LS 結合の場合と区別するためにチルダを付けた*4。

以上のようにして求めた LS 結合描像と j-j 結合描像でのスティーブンス因子を図 3 に示す*⁵。この図 では 2 次の項に対するスティーブンス因子 α_J も示した*⁶。 j-j 結合描像でのスティーブンス因子につい ては、表 1 に具体的な値も示す。LS 結合での値は適当な文献に表として載っている [22,24]*⁷。 $\alpha_J \ge \beta_J$ に関しては、 $f^5 \ge f^7$ の場合を除けば LS 結合描像と j-j 結合描像でそれほど大きな違いはないことがわ かる。 $f^5 \ge f^7$ の場合には電子やホールの数が多いので、多電子状態の近似の仕方によって与えられる電 子状態の違いが大きくなり、スティーブンス因子の値も大きく異なっている。これは g 因子について述 べたことと同じ事情である。 γ_J については、j-j 結合描像で f 電子の数が 6 以下ではゼロになってしま うので、そこでは LS 結合描像との違いは大きくなっている。このような 6 次の項が重要になる場合に は、ここで述べたような単純な j-j 結合描像では不十分である。そのような場合に対しては j = 7/2 の状 態の影響を摂動的に取り入れるという試みもなされている [23]。また、f 電子の数が 7 以上の場合には、j-j 結合描像でも 6 次の項の影響は取り入れられる。

2.5 f 電子を持つイオンを置き換えたときの結晶場パラメータ

前副節の式 (14) の結晶場ポテンシャルが、周りのイオンによる静電ポテンシャルによるものとすると、 この式における A₄ と A₆ は注目している f 電子を含むイオンの種類には依存しないものとなる。よって、 ある f 電子を含むイオンの場合に結晶場パラメータが求まれば、別のイオンに置き換えた場合の結晶場 パラメータも式 (30) を用いて推定することが出来る。

^{*4} 普通は LS 結合描像の電子状態に対するものだけが、スティーブンス因子と呼ばれてる。

^{*&}lt;sup>5</sup> なお、クーロン相互作用とスピン・軌道相互作用の大きさの比を変えてゆけば、波動関数が連続的に変化するから、当然ス ティーブンス因子も LS 結合描像の値から *j*-*j* 結合描像での値に連続的に変化する [23]。

^{*6} 正方晶などの立方晶より対称性の低い場合には、結晶場ポテンシャルに2次の項が現れる。

^{*&}lt;sup>7</sup> ただし、これらの文献では f⁴ の γ_J の値が正しい値の 11 倍になっている [25]。最近出版された本でも間違った値が記載さ れていることもあるので注意。

	f^1	f^2	f^3	f^4	f^5	f^7
$ ilde{lpha}_J$	$-\frac{2}{5\cdot7}$	$-\frac{2^2}{5\cdot 7^2}$	0	$\frac{2^2}{5\cdot 7^2}$	$\frac{2}{5\cdot7}$	$-\frac{2}{3^2\cdot7}$
$ ilde{eta}_J$	$\frac{2}{3^2 \cdot 5 \cdot 7}$	$-\frac{2}{3^2\cdot 5\cdot 7^2}$	0	$\frac{2}{3^2 \cdot 5 \cdot 7^2}$	$-\frac{2}{3^2\cdot 5\cdot 7}$	$\frac{2}{3 \cdot 5 \cdot 7 \cdot 11}$
$ ilde{\gamma}_J$	0	0	0	0	0	$-\frac{2^2}{3^3\cdot 7\cdot 11\cdot 13}$
	f^8	f^9	f^{10}	f^{11}	f^{12}	f^{13}
$ ilde{lpha}_J$	$-\frac{2^2}{3^2\cdot 7\cdot 11}$	$-\frac{2}{3^2\cdot7^2}$	0	$\frac{2}{3^2 \cdot 7^2}$	$\frac{2^2}{3^2\cdot 7\cdot 11}$	$\frac{2}{3^2 \cdot 7}$
$ ilde{eta}_J$	$-\frac{2^2}{3^2\cdot 5\cdot 7\cdot 11^2}$	$-\frac{2}{5\cdot 7^2\cdot 11\cdot 13}$	0	$\frac{2}{5\cdot 7^2\cdot 11\cdot 13}$	$\frac{2^2}{3^2\cdot 5\cdot 7\cdot 11^2}$	$-\frac{2}{3\cdot 5\cdot 7\cdot 11}$
$ ilde{\gamma}_J$	$\frac{2^2}{3^4\cdot 7\cdot 11^2\cdot 13}$	$-\frac{2^2}{3^3\cdot 7\cdot 11^2\cdot 13^2}$	0	$\frac{2^2}{3^3\cdot 7\cdot 11^2\cdot 13^2}$	$-\frac{2^2}{3^4\cdot 7\cdot 11^2\cdot 13}$	$\frac{2^2}{3^3\cdot 7\cdot 11\cdot 13}$

表1 j-j 結合描像でのスティーブンス因子。

では、具体例として RB₆ (R=Ce、Pr、Nd) の場合に考えてみる。これらの物質は同じ結晶構造を 持っており、f 電子を含むイオン R が異なっている。PrB₆ に対する結晶場パラメータの実験値は $B_4^{(Pr)}(J=4) = 0.151$ K、 $B_6^{(Pr)}(J=4) = 0.0004$ K である [26]。これを用いると、CeB₆ に対する結晶場パ ラメータは

$$B_{4}^{(Ce)}(J = 5/2) = \beta_{J}^{(Ce)} A_{4} \langle r^{4} \rangle^{(Ce)} = \beta_{J}^{(Pr)} A_{4} \langle r^{4} \rangle^{(Pr)} \frac{\langle r^{4} \rangle^{(Ce)}}{\langle r^{4} \rangle^{(Pr)}} \frac{\beta_{J}^{(Ce)}}{\beta_{J}^{(Pr)}} = B_{4}^{(Pr)}(J = 4) \frac{\langle r^{4} \rangle^{(Ce)}}{\langle r^{4} \rangle^{(Pr)}} \frac{\beta_{J}^{(Ce)}}{\beta_{J}^{(Pr)}},$$
(41)

と求められる。厳密に言えば格子定数が変わるので、CeB₆と PrB₆ で A_4 の値は異なるはずであるが、その変化は小さいと仮定した。〈 r^4 〉の値としては Dirac-Fock 法と呼ばれるもので計算された結果 [27] を用い、 β_J としては LS 結合描像の値を用いると、 $B_4^{(Ce)}(J = 5/2) = -1.49$ K となる。ただし、Pr に対する〈 r^4 〉の値は、文献 [27] に与えられていないので、Ce と Nd の平均値を用いた。また、J = 5/2 に対しては 6 次の等価演算子はゼロなので、 $B_6^{(Ce)}(J = 5/2)$ は必要ない。同様にして、PrB₆ に対する結晶場パラメータから、NdB₆ に対する結晶場は $B_4^{(Nd)}(J = 9) = 0.0501$ K、 $B_6^{(Nd)}(J = 9) = -0.0002$ K と求められる。

実験から見積もられた結晶場パラメータの値は、 $B_4^{(Ce)}(J = 5/2) = -1.48$ K [28]、 $B_4^{(Nd)}(J = 9) = 0.0539$ K、 $B_6^{(Nd)}(J = 9) = -0.00025$ K [26] であり、 PrB_6 のパラメータから求めた値に近い。

2.6 *j-j* 結合描像における弱い結晶場と強い結晶場

第4節で、*j-j*結合描像で強い結晶場の近似で多極子相互作用を議論するので、ここで *j-j*結合描像での弱い結晶場と強い結晶場の近似について述べておく。

f 電子の場合、結晶場の大きさはせいぜい 0.1 eV 程度である。それに対してクーロン相互作用は 1-10 eV 程度であるから、結晶場の大きさはクーロン相互作用よりも十分小さく、結晶場はクーロン相互 作用を取り入れた後に摂動的に取り扱うことが出来そうである。この取り扱い方を弱い結晶場の取り扱 いと呼び、その場合には LS 結合描像でも j-j 結合描像でも第 2.4 節で求めたスティーブンス因子などを 用いて結晶場状態を求めればよい。 しかし、*j-j* 結合描像で作られた *j* = 5/2 の電子間に働く実効的なクーロン相互作用の大きさは、もと もとの *l* = 3 の基底で書き表したクーロン相互作用よりも小さくなる [29,30]。これは、状態空間を限っ たために、クーロン相互作用によるエネルギーの利得が小さくなるということである*⁸。特にフント結合 の大きさは 0.02 倍程度になってしまうので、弱い結晶場の取り扱いが必ずしも良いとはいえない。しか も、*j-j* 結合描像で弱い結晶場の立場をとると、 f^3 の場合に結晶場の取り扱いに困難が生じる。なぜな ら、結晶場を取り入れずに先に *J* = 9/2 の多電子状態に制限してしまうと、図 3 に示したようにスティー ブンス因子がすべてゼロになってしまう。そのため結晶場の効果を取り入れることが出来ない。これは 結晶場の影響が重要な系を取り扱うのには適した出発点とはいえない。

それでは弱い結晶場の立場とは逆に、クーロン相互作用を取り入れる前に、結晶場の影響を取り入れる ことを考えてみる。つまり、まず1電子状態に対して結晶場を考えてみる。その1電子の結晶場状態の うち、低エネルギー状態のみを残す近似を強い結晶場の近似と呼ぶことにする。この近似は、考える状態 を1電子状態の段階で大きく制限する。

例として、立方晶の場合を考える。この場合、結晶場によってj = 5/2の1電子状態は $\Gamma_7 = 1$ 重項と Γ_8 四重項に分かれる。強い結晶場の立場では、その分裂は十分大きいと考え、 Γ_7 軌道のみ又は Γ_8 軌道のみ を考えて多電子状態を議論する。 f^3 の場合であれば、結晶場状態は次のようになる。1電子に対して Γ_7 の結晶場準位の方が低い場合には、 Γ_7 に2電子で Γ_8 に1電子の状態になる。この場合、 Γ_7 軌道は完全 に埋まっているので、 Γ_8 の1電子の状態のみを考えれば良い。逆に1電子に対して Γ_8 の結晶場準位の 方が低い場合は、 Γ_8 に3つの電子が入った状態になり、これは Γ_8 に1ホールの状態である。つまり、 f^3 の場合は Γ_8 軌道に1電子もしくは1ホールになるので、 f^3 の持つ結晶場状態は常に Γ_8 になる。

実際に *j*-*j* 結合描像で、つまり1電子状態としては *j* = 5/2 の状態のみを考えるとき、クーロン相互作 用や結晶場を有限にしたまま近似をせずに得られる結晶場基底状態は、クーロン相互作用を特徴づけるパ ラメータを現実的な値に選ぶ限り、 Γ_8 四重項である。これは強い結晶場の近似で得られる結晶場状態と 状態が完全に一致するわけではないが、同じ対称性を持っている。つまり、*j*-*j* 結合描像を用いる場合に は、どちらかを選ぶとすれば、弱い結晶場の立場よりは強い結晶場の立場の方がよい。

なお、*j-j*結合描像では、結晶場はもともと1電子状態に対するポテンシャルに過ぎないので、状態数 をそれほど制限する必要がない場合には、結晶場ポテンシャルを有限にしたまま正しく取り入れ、クーロ ン相互作用を後から取り入れるということも出来る。この場合には、結晶場ポテンシャルの大きさがスピ ン・軌道相互作用よりは十分小さいということを除いて、結晶場ポテンシャルの大きさに基づいた近似を 行わないので、上記の弱い結晶場から強い結晶場まで全ての状況に対応することが出来る。特に、結晶場 の影響は重要であるが、その分裂の大きさが小さく1電子の結晶場励起状態も取り入れる必要がある場 合には、このような方法を取ることが望まれる。なおこの方法で、クーロン相互作用の取り入れ方として 摂動論を用いるような場合も強い結晶場の近似と呼ぶことができるが、本稿ではもっぱら1電子状態を 結晶場の低エネルギー状態に制限する方法という意味で強い結晶場という言葉を用いる。

3 多極子モーメント

f 電子の状態を特徴づけるのに有用な物理量は多極子モーメントである。この節ではその多極子モーメントについて簡単に述べる。

^{*8} もちろん、スピン・軌道相互作用は得している。逆に、LS 結合描像ではクーロン相互作用によるエネルギーの利得を優先 し、スピン・軌道相互作用についてはあまり得できない。

図4 (a) 四極子モーメントを持つ状態。(b) 八極子モーメントを持つ状態。

3.1 多極子モーメント

まず、有限になりうる多極子モーメントとしてどのようなものがあるか考える。通常我々が考察するの は、軌道角運動量 l が一定の状態空間である。例えば、f 電子系であれば l = 3 の状態空間を考える。こ のようなときには、波動関数の空間反転に対するパリティは決まっていて、 $\varphi_a(-r) = (-1)^l \varphi_a(r)$ である。 ここで a は軌道角運動量 l の状態を区別するラベルである。また、磁気モーメントは $M(r) = -\mu_B(l+2s)$ であるから、パリティは正である。波動関数のパリティが決まっている場合には、対称性から行列要素が ゼロになってしまう多極子モーメントがある。例えば、電気双極子モーメントは

$$\int d\mathbf{r}\varphi_a^*(\mathbf{r})x\varphi_b(\mathbf{r}) = \int d\mathbf{r}\varphi_a^*(-\mathbf{r})(-x)\varphi_b(-\mathbf{r}) = -\int d\mathbf{r}\varphi_a^*(\mathbf{r})x\varphi_b(\mathbf{r})$$
(42)

となるので、行列要素はゼロである*⁹。一方、磁気双極子モーメントの演算子 M は空間反転に対して符 号を変えないので、行列要素 $\int dr \varphi_a^*(r) M_x \varphi_b(r)$ は一般にはゼロにならない。結局、考える演算子が空間 反転に対して符号を変えない演算子のみが、有限の行列要素を持ちうる。さらに例として、四極子モーメ ント演算子で電気的なもの、例えば xy といったものを考えると、これはパリティが正なので有限になり うる。一方、磁気的な四極子モーメントは xM_y といったものであるが、これはパリティが負なので有限 にならない。同様にして、さらに高次で有限になりうる多極子モーメントは、磁気八極子、電気十六極 子、などである。

これらの多極子モーメントを実際に計算する場合には、磁気モーメントや結晶場ポテンシャルについて 行ったように、等価演算子で置き換えると便利である。つまり、 $xy \implies (J_x J_y + J_y J_x)/2$ (比例係数を除い て)などである。ただし、通常はもとの演算子についての絶対値が必要になることは少ないので、等価演 算子で置き換えるときの比例係数 (還元行列要素) について議論することはあまりない。なお、対称性か ら行列要素が消える x といった演算子も、等価演算子で置き換えると J_x となり、一見有限になりそうに 思えるが、このような場合は還元行列要素がゼロになっているのである。

ここで、多極子モーメントの期待値が有限である電子状態は、どのようなものであるかをまとめてお く。電気単極子は、電荷のことである。磁気双極子は、磁気モーメントと通常呼んでいるものである。四 極子モーメント演算子は、xy といったものであるから、この期待値が有限に残る状態は、電荷分布に異方 性をもっている状態である。例えば、図 4(a) に示したような電荷分布を持つ状態は、有限の四極子モー メントを持つ。さらに高次の八極子モーメントの演算子は、四極子の演算子にさらに磁気モーメント演算 子を掛けたものであるから、この期待値が有限に残る状態は、磁気モーメント分布に異方性を持っている

^{*9} もちろん、軌道角運動量1が異なる状態間であれば有限になりうる。そのような行列要素はX線散乱などを議論するときに 重要になる。どのような行列要素が有限になるかは、ここでの議論と同様に対称性を用いて調べることができ、それは選択 則と呼ばれている。

状態である。例えば、図 4(b) に示したようなスピン分布を持つ状態は、有限の八極子モーメントを持つ。 この副節の最後に、多極子の秩序として議論されるべき状態について述べておく。f 電子系では通常の 磁気秩序(双極子の秩序)が起きた場合には、高次の多極子モーメントも同時に有限になる。なぜなら、 磁気モーメントの一部は軌道モーメントが担っており、電荷分布の異方性を引き起こす。また、スピン モーメントもスピン・軌道相互作用を介して、やはり電荷分布の異方性を引き起こす。よって、磁気モー メントが有限になれば、四極子モーメントも有限になる。そして、スピン・軌道相互作用がある場合に は、磁気モーメントを異方性を持たせずに分布させることは難しいので、八極子モーメントも有限にな る。よって、多極子の秩序として議論されるのは、双極子のような低次のモーメントを伴わない秩序状態 である。

3.2 f 電子状態の分類法としての多極子モーメント

各イオンの f 電子の状態を特徴づける物理量に対応する演算子は、一般にはそれぞれのイオンにおけ るエルミート演算子である。低エネルギーの物理を議論する上では、f 電子の状態全てを考える必要は なく、スピン・軌道相互作用や結晶場などで分裂した状態のうち低エネルギーの状態のみを考えれば良 い。その考慮する状態の数を n とする。そのような状態空間での独立なエルミート演算子の数は n² であ る*¹⁰。f 電子系では通常、独立な演算子として多極子モーメントの演算子を取ることが多い。その理由 の一つは、多極子モーメントは対称性に基づいたものなので、系統的に分類できるからである。もう一つ の理由は、多極子モーメントの少なくとも低次のものは対応する外場が存在するからである。

単極子	(電荷)	\iff	電場
双極子		\iff	磁場
四極子		\iff	格子歪み

もちろん、独立なエルミート演算子として多極子モーメント以外のものを採用してもよい。例えば、スピン・軌道相互作用の弱い d 電子系であれば、スピン自由度と軌道自由度のそれぞれに対して対応するエルミート演算子を用いて、その直積で全自由度に対する独立なエルミート演算子を定義した方が便利である。

以下では、エルミート演算子とその制限した状態空間での行列表示を区別せずに呼ぶことにする。任 意のエルミート演算子 A は、選んだ独立なエルミート演算子 O_{α} (例えば多極子モーメント)で展開で きる。

$$A = \sum_{\alpha} a_{\alpha} O_{\alpha}.$$
(43)

なお、 O_{α} を直交するように選べば展開係数 a_{α} は

$$a_{\alpha} = \frac{\text{Tr}[O_{\alpha}A]}{\text{Tr}[O_{\alpha}^2]}.$$
(44)

ここで、直交するというのは

 $\operatorname{Tr}[O_{\alpha}O_{\beta}] = 0 \qquad \text{for } \alpha \neq \beta, \tag{45}$

という意味である。

^{*&}lt;sup>10</sup> ハイゼンベルグモデルのような局在モデルを考える場合には、それぞれのサイトの電子数は決まっているので、電荷演算子、 つまり行列表示で言えば単位行列は考える必要がなく、考えるべき演算子の数は n² – 1 となる。

具体例:その1、Γ8 結晶場状態

n = 4, $n^2 = 16_{\circ}$

独立な多極子:単極子1個、双極子3個、四極子5個、八極子7個。

これらの多極子のうち Γ_{4u} の対称性を持つ双極子と八極子は独立だが、直交しない。このような場合、 常磁性相であっても、双極子に対する外場、つまり磁場を掛けたときに、その 1 次で八極子モーメントも 有限になる。また、同じ対称性に属する多極子同士は波数ゼロで相互作用することが出来るので、 Γ_8 の 状態の常磁性相での帯磁率はキュリー・ワイス則からずれる [31]。

 Γ_8 四重項は2つのクラマース二重項からなるので、それぞれのクラマース二重項の中の2の状態を区別するのに σ 、2つのクラマース二重項を区別するのに τ という記号を用いることが多い。 σ に関するエルミート行列は $2^2 = 4$ 個で、通常、単位行列とパウリ行列 σ を用いる。 τ に関しても同様であるが σ に対するものと区別するために、 τ に関するパウリ行列は τ と表す。これらの直積で $4 \times 4 = 16$ 個の独立なエルミート行列が作れる。実際、立方晶の対称性で分類した多極子演算子は

 $(1, \tau_x, \tau_y, \tau_z \mathcal{O}$ 線形結合) \otimes $(1, \sigma_x, \sigma_y, \text{ or } \sigma_z),$

(46)

という形になっている [32]。このように書くと、一見 d 電子系の場合のように、単に軌道状態に関する 演算子とスピン状態に関する演算子の直積で全自由度に関する演算子を書いているように思える。しか し、ここで σ と書いたものは本当のスピンではないし、一般には保存量でもない。

具体例:その 2、j = 5/2 $n = 6, n^2 = 36$ 。 独立な多極子: Γ_8 の場合に加えて、十六極子 9 個、三十二極子 11 個。

この場合、全状態を考えると球対称なので、 Γ_{4u} の双極子と八極子も含めてすべて直交している。 Γ_8 の 状態に加えて Γ_7 の状態もあるので、クラマース二重項は3つある。この3つのクラマース二重項を区別 するのに τ という記号を用いることにすると、この τ に関する演算子は3×3行列で表される。3×3の 独立なエルミート行列の代表的なものは、Gell-Mann 行列 [SU(3)の生成子]である。立方晶の対称性で 分類した多極子演算子は

(1 と Gell-Mann 行列の線形結合) \otimes (1, σ_x , σ_y , or σ_z), (47)

という形になる。

4 多極子相互作用

この節では、*j-j*結合描像で強い結晶場という近似で、多極子相互作用を求める方法を紹介する [16–19]。 1 イオンあたりの *f* 電子の数が多くなければ、第 2 節で見たように *LS* 結合描像であっても *j-j* 結合描像 であっても得られる結果はそれほど変わらないはずである。また、*j-j* 結合描像を用いる場合、第 2.6 節 で説明したように弱い結晶場の立場よりは強い結晶場の立場の方がよい場合が多い。

この近似方法の長所は、1 電子の段階で状態数を著しく制限できる点である。そのため、軌道縮退のある d 電子系に適用されてきた手法を用いて格子上の f 電子モデルの解析が出来る。以下では Γ_8 の結晶場 基底状態での多極子相互作用を求めるが、これは d 電子系に対する 2 軌道の拡張ハバードモデルの超交 換相互作用を求めること [33] に対応している。ただし、f 電子系では擬スピン σ は一般には保存量では ないので複雑になる。

4.1 有効相互作用

ハミルトニアンが次の式で与えられるとする。

$$H = H_{\rm kin} + H_{\rm loc},\tag{48}$$

ここで *H*_{kin} は電子のサイト間の跳び移りを表す項(運動エネルギー項)、*H*_{loc} は各サイトでのクーロン相 互作用や結晶場を表す項である。ここで、強結合極限を考え、*H*_{kin} を摂動的に扱うことにする。*H*_{loc} は 単一サイトのハミルトニアンの和であるから、それは解けているとする。

$$H_{\rm loc}|\Phi_n^a\rangle = E_n|\Phi_n^a\rangle. \tag{49}$$

 E_n は固有エネルギーで、aは同じ E_n を持つ状態を区別するためのラベル、 $|\Phi_n^a\rangle$ はその固有状態を表す。 例えば、各サイトの基底状態が Γ_8 四重項であれば、基底状態に対してaは4のサイト数乗個ある。ここ で H_{loc} の基底エネルギーを E_0 とする。その基底状態が縮退しているとき、励起状態の影響を2次摂動 で取り込んだ有効相互作用は次の式で与えられる。

$$H_{\rm eff} = \sum_{a,b,u} \sum_{n\neq 0} |\Phi_0^a\rangle \langle \Phi_0^a | H_{\rm kin} \frac{|\Phi_n^u\rangle \langle \Phi_n^u|}{E_0 - E_n} H_{\rm kin} |\Phi_0^b\rangle \langle \Phi_0^b|.$$
⁽⁵⁰⁾

もし、 H_{kin} が最近接サイト間の跳び移りしかなければ、 H_{eff} は最近接サイト間の相互作用になる。 H_{loc} の 基底状態が f^1 であれば、 H_{eff} は次のような式で与えられる。

$$H_{\rm eff} = \sum_{\langle \boldsymbol{r}, \boldsymbol{r}' \rangle} \sum_{s_1 - s_4} I_{s_3, s_4; s_1, s_2}^{\boldsymbol{r}' - \boldsymbol{r}} f_{\boldsymbol{r} s_3}^{\dagger} f_{\boldsymbol{r} s_1} f_{\boldsymbol{r}' s_4}^{\dagger} f_{\boldsymbol{r}' s_2}, \tag{51}$$

ここで、 $\langle \boldsymbol{r}, \boldsymbol{r}' \rangle$ は最近接サイトの組を表し、 $f_{\boldsymbol{r}s_i}^{\dagger}$ はサイト \boldsymbol{r} で状態 s_i の f電子の生成演算子である。 $I_{s_3,s_4;s_1,s_2}^{\boldsymbol{r}'-\boldsymbol{r}}$ は跳び移り積分や中間状態に依存したものになる。得られた H_{eff} は多極子間の相互作用に書き 直すことが出来る。

具体的に有効相互作用を求めるためには、跳び移り積分を決めなければならない。もちろん、その跳び 移り積分は物質によって異なり、その違いが物質ごとの多様な振る舞いの原因の一つである。しかし、多 極子相互作用に関する微視的な理論は現状ではほとんどないことを考えると、出来るだけ簡単なモデルの 場合にどのようなことが起こるのかをおさえておく必要がある。そこで、我々は跳び移り積分としては f 電子間の σ 結合という最も簡単なものを考え、そのモデルを解析した [16–18]。ここで σ 結合というの は、z方向の跳び移りを考えるときにz方向の軌道角運動量が0のもの同士の跳び移り積分のことであ り、f 電子間のものを (ff σ) と書き表す。(ff σ) が与えられると、他の方向の跳び移り積分は対称性か ら決定される。なお、一般にz方向の跳び移り積分は対称性からz方向の軌道角運動量が同じもの同士し か有限にならないが、z方向の軌道角運動量が1のもの同士の場合は π 結合、2のもの同士の場合は δ 結 合、などと名付けられている。

実際の解析では跳び移り積分以外に関しても次のような簡単化をした。まず *j-j* 結合描像の Γ_8 軌道の みを考えた。つまり、強い結晶場の近似を用いた。また基底状態は f^1 とした。強い結晶場の立場では f^3 の場合は Γ_8 軌道に 1 ホールと同じなので、この場合も含むことになっている。式 (50) に現れる f^2 の中間状態もこのモデルでの基底状態 (Γ_5 三重項) のみを考えた。

このような f 電子系の多極子相互作用を議論するための最も簡単な近似で、上記の有効モデル式 (51) を求め、解析すると図 5 に示す多極子秩序状態が得られる [16–18]。非常に単純化したモデルではある が、格子構造と f 電子の対称性の兼ね合いで様々な秩序状態が現れることがわかる。単純立方格子では

low temperature

図 5 単純立方格子 [(a)、(b)]、体心立方格子 [(c)、(d)]、面心立方格子 [(e)] における多極子秩序状態 [18]。立方晶の対称性のために無磁場では秩序状態が一意に決まらない場合があるが、ここでは座標軸に平行な方向に磁場をかけた場合に安定な状態を示している。これらの図では、波動関数が極座標を用いて $\phi(r, \theta, \varphi, \tilde{\sigma}) = R(r)\psi(\theta, \varphi, \tilde{\sigma})$ と与えられるときに、 $r = \sqrt{\sum_{\tilde{\sigma}} |\psi(\theta, \varphi, \tilde{\sigma})|^2}$ で決定される面を描いている。ここで、 $\tilde{\sigma}$ は擬スピン (σ) ではなく本当のスピン状態である。これらの面のグラデーションはスピン上向き(白)とスピン下向き(黒)の状態の重みを表している。

まず Γ_{3g} の対称性を持つ四極子の反強的な秩序が起こり、図 5(a) に示すような電荷分布になる。この状態ではスピン上向きと下向きの重みは同じである。さらに低温で強磁性転移が起こり、電荷分布は変化せずにスピン上向きの状態の重みが増える [図 5(b)]。体心立方格子ではまず Γ_{2u} の八極子の反強的秩序が起こる [図 5(c)]。この状態では電荷分布は立方晶の対称性を保ったままであり、スピンに関しても上向きと下向きの状態の重みは同じである。しかし、スピン分布が異方的であるので有限の八極子モーメントを持つ状態である。さらに低温で強磁性転移が起こり、電荷分布も変化している [図 5(d)]。面心立方格子では triple-*q* という周期で、 Γ_{5u} の八極子モーメントが秩序する [図 5(e)]。この秩序状態では電荷分布も立方晶の対称性からずれているので、四極子モーメントも持っている。

単純立方格子で起こる Γ_{3q} の秩序は τ_x や τ_z の秩序で、体心立方格子で起こる Γ_{2u} の秩序は τ_y の秩序

図6 軌道縮退があって、異なる軌道間の跳び移り積分が小さいとき、同じ軌道間の跳び移り積分に 関する2次摂動の中間状態でのクーロン相互作用を考えると、異なる軌道を占めた方がエネルギーを 得することが出来る。さらに、中間状態のフント結合のエネルギーを考えると、スピンはそろえた方 がエネルギーを得できる。

である。これらはスピン・軌道相互作用があるので単純ではないが、"軌道"秩序と呼んでよいであろう。 単純立方格子や体心立方格子では、そのような反強軌道秩序のもとで強磁性状態になっているものが基底 状態である。これは遷移金属化合物のスピン・軌道秩序に対して Kugel と Khomskii が提唱したもの [34] と同様の機構が働いているものと捉えることも出来る(図6参照)。それに対して、面心立方格子では幾 何学的なフラストレーションのために、単純な反強的な軌道秩序を実現することが出来ず、フラストレー ションを避けるように triple-*q* という構造が実現していると考えられる。

4.2 跳び移り積分について

第 4.1 節で紹介した研究では、跳び移り積分として最も簡単な (*ff*σ) のものを考えていた。この副節では、もっと現実的な跳び移り積分を考えるときに、どの程度の違いが現れるかを調べる [19]。

具体例として図 7 に示す面心立方構造をもつ NpO₂ の場合を考える。NpO₂ では Np は +4 価、O は -2 価になっていると考えられている。つまり、Np は f^3 で、O は p^6 である。この物質での Np イオンの結晶場基底状態は Γ_8 である。この状態は j-j 結合描像で強い結晶場の近似では Γ_8 軌道に 1 ホールの状態 になっている。具体的には、ホール描像を用いると次の式で与えられる。

$$|\alpha \pm 1\rangle = \frac{1}{\sqrt{6}} (\sqrt{5} f_{j\pm 5/2}^{\dagger} + f_{j\mp 3/2}^{\dagger}) |0\rangle \equiv f_{\alpha \pm 1}^{\dagger} |0\rangle,$$
(52)

$$|\beta \pm 1\rangle = f_{j\pm 1/2}^{\dagger}|0\rangle \equiv f_{\beta\pm 1}^{\dagger}|0\rangle.$$
(53)

また、O についてもホール描像を用いれば、その基底状態はホールがゼロの状態である。図7 に示した 結晶構造から、f 電子間の跳び移り積分は f 電子間の直接のものではなく、酸素を介したものが支配的 になると期待される。酸素を介する有効的な f 電子間の跳び移り積分は

$$T^{\boldsymbol{\mu}}_{l_z;l'_z} = \sum_{\boldsymbol{\nu}} \sum_{i=x,y,z} \frac{t^{\boldsymbol{\nu}}_{l_z p_i} t^{\boldsymbol{\mu}-\boldsymbol{\nu}}_{p_i l'_z}}{\epsilon_f - \epsilon_p},\tag{54}$$

で与えられる。ここで、 μ は最近接の Np イオン同士をつなぐベクトル、 ν は最近接の Np と O をつな ぐベクトル、 $t_{l_z p_i}^{\nu}$ は軌道角運動量の z成分が l_z の Np イオンの f 軌道と O イオンの p_i 軌道間の跳び移り 積分、 ϵ_f と ϵ_p はそれぞれ f 軌道と p 軌道のエネルギー準位である。ここで、図 7 からも分かるように、 Np イオン間の 1 つの方向の跳び移り積分には、2 つの O イオンが寄与するのが特徴的である。

図7 NpO₂の結晶構造。Npのf電子はOのp軌道を経由して隣のNpに移動する。

p軌道は軌道角運動量 1 なので、跳び移り積分は ($pf\sigma$) と ($pf\pi$) の 2 つのパラメータで決定される。 NpO₂ の結晶構造の場合について、式 (54) を計算し、 Γ_8 軌道に関する跳び移り積分を求めと、例えば (1,1,0) 方向では

$$\begin{pmatrix} T_{\alpha+1;\alpha+1} & T_{\alpha+1;\beta+1} \\ T_{\beta+1;\alpha+1} & T_{\beta+1;\beta+1} \end{pmatrix} = \begin{pmatrix} b_1 & ib_2 \\ -ib_2 & b_3 \end{pmatrix},$$
(55)

$$b_1 = [6(pf\sigma)^2 + 4\sqrt{6(pf\sigma)(pf\pi) - (pf\pi)^2}] \times 2/[189(\epsilon_f - \epsilon_p)],$$
(56a)

$$b_2 = [-2\sqrt{3}(pf\sigma)^2 + 16\sqrt{2}(pf\sigma)(pf\pi) - 5\sqrt{3}(pf\pi)^2] \times 2/[189(\epsilon_f - \epsilon_p)],$$
(56b)

$$b_3 = [-2(pf\sigma)^2 - 20\sqrt{6}(pf\sigma)(pf\pi) - 9(pf\pi)^2] \times 2/[189(\epsilon_f - \epsilon_p)],$$
(56c)

となる [19]。また、 $T_{\tau-1;\tau'-1} = T^*_{\tau+1;\tau'+1}$ 、 $T_{\tau+1;\tau'-1} = T_{\tau-1;\tau'+1} = 0$ である。他の方向の跳び移り積分は対称性から、 b_1 、 b_2 、 b_3 で書き表すことができる。

ところで面心立方格子の場合に、第 4.1 節で説明した (*ff* σ) の跳び移り積分を考えると、その場合に は式 (55) で $b_1 = (ff\sigma)/7$ 、 $b_2 = \sqrt{3}(ff\sigma)/14$ 、 $b_3 = 3(ff\sigma)/28$ と置き換えただけのものになる [16,17]。 つまり、*f* 電子の対称性さえ正しく取り入れていれば、その対称性によって跳び移り積分の形はかなり制 限されてしまうということである。ただし、(*pf* σ)、(*pf* π) の比を変えても、式 (56) の値を、(*ff* σ) の場 合に比例するようにはできない。

なお、NpO₂の様々な実験結果を説明できる秩序状態として提案された状態 [13] は、第 4.1 節で説明した跳び移り積分として (*ff* σ)を採用したモデルで、面心立方格子の場合に実際に得られた八極子秩序状態 [図 5(e)] である。この秩序状態はこの副節で説明したような O の p 軌道をあからさまに取り入れたモデルでも得られる [19]。ただし、そのモデルで得られる秩序状態は ($pf\sigma$) などのパラメータに依存する。

5 PrRu₄P₁₂ における十六極子秩序の可能性

スクッテルダイト化合物における多極子秩序に対する微視的理論として注目されるのは、瀧本による PrRu₄P₁₂の金属絶縁体転移に対する理論[15]であろう。この節では、その理論を簡単に紹介する。

図8 Γ_{1q} の反強十六極子秩序。この図の中心にあるのが Γ_8 軌道で、角にあるのが Γ_7 軌道である。

PrRu₄**P**₁₂の伝導バンドは **P**₁₂の *xyz*の対称性を持つ *a*_u 分子軌道から主に構成されている [35]。瀧本は この伝導バンドのみを考え、混成として **P**₁₂の *a*_u 軌道とそのカゴの中にいる **Pr** の *f* 軌道との間のもの だけを考えた。つまり、混成としては局所的なものだけを考えた。このとき、*j-j* 結合描像で考えると、 混成できる *f* 電子は Γ₇の軌道のものだけである。なぜなら、Γ₇の波動関数は *xyz* と同じ対称性に属する が、Γ₈の軌道は対称性が異なるからである。そのため、伝導電子を介した *f* 電子間の **RKKY** 相互作用 は、Γ₇の軌道に関する、擬スピン間の相互作用と電荷に関する相互作用のみになる。瀧本は **PrRu**₄**P**₁₂ に 対応する適当な結晶場パラメータなどを選べば、この Γ₇ 軌道に関する電荷秩序が起こることを示した。 **Pr** サイトの *f* 電子の数は一定と考えているから、Γ₇の電荷(電子数)が変わるというのは、*f* 電子の占 める Γ₇ 軌道と Γ₈ 軌道の割合が変わるということである。*j* = 5/2 の Γ₇ 軌道と Γ₈ 軌道の割合の変化を引 き起こすのは、通常は結晶場の 4 次の項である。そして、この秩序状態の秩序パラメータになっている 多極子モーメントに対する等価演算子は、結晶場に対する等価演算子と同じものになる。この 4 次の多 極子モーメントは Γ_{1q} の対称性を持つ十六極子モーメントである。

この議論だけでは、この秩序によって結晶場ポテンシャルの値が変わっただけのように思える。しか し、ここで重要なのは伝導バンドのネスティングのために、その十六極子秩序が反強的に起こっているこ とである。つまり、サイトごとに有効的な結晶場が異なっているのである。これは、磁場中の反強磁性転 移との対応を考えると分かりやすい。

相転移	外場	平均場	
反強磁性転移	磁場	周りのイオンからの有効磁場	
反強十六極子転移 (Γ _{1g})	結晶場	周りのイオンからの有効結晶場	

結晶中では大きさはともかくとして、結晶場が存在して対称性は破れているので、 Γ_{lg} の"強的"十六極 子秩序は、磁場中の強磁性秩序と同様に、自発的に対称性を破る相転移ではあり得ない。しかし、反強的 なものであれば、磁場中の反強磁性転移と同様に対称性を破る相転移として現れ得る。図 8 にこの十六 極子秩序状態を示す。この秩序状態では、各サイトでの電子状態は立方晶の対称性を保っている。また、 この秩序状態では、サイトごとに働く有効結晶場が異なるので、サイトごとに結晶場状態が異なるが、そ れは実際に $PrRu_4P_{12}$ の金属絶縁体転移の転移温度以下での中性子散乱の実験で観測されている [36]。

このように、j-j 結合描像を用いると、伝導バンドと f 電子の対称性からどの多極子モーメントの秩序

が有力であるかを比較的簡単に議論できた。その理由は、j-j結合描像では、多電子状態は Γ_7 と Γ_8 の1 電子状態から構成されていて、その1電子状態の役割の違いが結晶の対称性からはっきりわかれていた ためである。

6 おわりに

本稿では、*f* 電子の記述方法を初等的ではあるが、やや詳しく説明した。そして、*j-j* 結合描像に基づいた、多極子秩序の微視的理論を紹介した。

多極子の自由度が発現するためには、基本的には対称性が高いことが必要で、そのため立方晶の物質を 対象とすることになる*¹¹。実際、立方晶の系で四極子や八極子などの多極子秩序が起こる物質がいくつ か見つかってきている。次に考えられる課題としては、そのような多極子の秩序を引き起こす揺らぎを 用いた超伝導の探索が挙げられるであろう。例えば、PrOs₄Sb₁₂ に対しては多極子揺らぎを媒介とした超 伝導が提案されている [38–40]。そのような超伝導の機構を理解するためには、3 次元の軌道縮退のある f 電子の模型に基づいて多極子揺らぎや超伝導を議論することが必要であろう。その場合、やはり状態空 間をいかに制限して、計算を実行できるようにするかということが問題となる。それに対しては、本稿で 述べたように1電子の段階で状態数を制限することができる *j-j* 結合描像が有力に思われる。

謝辞

第2.5節は播磨尚朝氏から頂いたコメントを参考に書き加えたものです。第4節で紹介した内容は堀 田貴嗣氏との共同研究であり、本稿をまとめる上でも議論して頂きました。また、第2節に関しても数 値計算による確認をいくつかして頂きました。第3.1節は三宅厚志氏から頂いたコメントをもとに加筆し たものです。瀧本哲也氏からは *j*-*j* 結合における結晶場の取り扱いや十六極子秩序に関する節について有 益なコメントを頂きました。各氏に深く感謝致します。

参考文献

- [1] M. Imada, A. Fujimori and Y. Tokura: Rev. Mod. Phys. 70 (1998) 1039.
- [2] P. Santini, R. Lémanski and P. Erdös: Adv. Phys. 48 (1999) 537.
- [3] T. Hotta: Rep. Prog. Phys. 69 (2006) 2061.
- [4] A. Takahashi and H. Shiba: J. Phys. Soc. Jpn. 69 (2000) 3328.
- [5] R. Maezono and N. Nagaosa: Phys. Rev. B 62 (2000) 11576.
- [6] J. van den Brink and D. Khomskii: Phys. Rev. B 63 (2001) 140416(R).
- [7] D. I. Khomskii: Int. J. Mod. Phys. B 15 (2001) 2665.
- [8] K. Kubo and D. S. Hirashima: J. Phys. Soc. Jpn. 71 (2002) 183.
- [9] H. Kusunose and Y. Kuramoto: J. Phys. Soc. Jpn. 70 (2001) 1751.
- [10] K. Kubo and Y. Kuramoto: J. Phys. Soc. Jpn. 72 (2003) 1859.
- [11] K. Kubo and Y. Kuramoto: J. Phys. Soc. Jpn. 73 (2004) 216.
- [12] H. Kusunose and Y. Kuramoto: J. Phys. Soc. Jpn. 74 (2005) 3139.

^{*&}lt;sup>11</sup> ただし立方晶でなくても、結晶場の大きさが多極子相互作用よりも小さければ、結晶場分裂のために多極子の自由度が消え てしまう温度よりも高温で多極子秩序が起こる可能性がある。実際、正方晶の DyB₂C₂ でも四極子秩序が実現している [37]。

- [13] J. A. Paixão, C. Detlefs, M. J. Longfield, R. Caciuffo, P. Santini, N. Bernhoeft, J. Rebizant and G. H. Lander: Phys. Rev. Lett. 89 (2002) 187202.
- [14] Y. Kuramoto, J. Otsuki, A. Kiss and H. Kusunose: Prog. Theor. Phys. Suppl. 160 (2005) 134.
- [15] T. Takimoto: J. Phys. Soc. Jpn. 75 (2006) 034714.
- [16] K. Kubo and T. Hotta: Phys. Rev. B 71 (2005) 140404(R).
- [17] K. Kubo and T. Hotta: Phys. Rev. B 72 (2005) 144401.
- [18] K. Kubo and T. Hotta: Physica B **378-380** (2006) 1081.
- [19] K. Kubo and T. Hotta: Phys. Rev. B 72 (2005) 132411.
- [20] T. Hotta: J. Phys. Soc. Jpn. 74 (2005) 1275.
- [21] 犬井鉄郎、田辺行人、小野寺嘉孝: 応用群論 (増補版、裳華房、1976年).
- [22] M. T. Hutchings: Solid State Phys. 16 (1964) 227.
- [23] T. Hotta and H. Harima: J. Phys. Soc. Jpn. 75 (2006) 124711.
- [24] K. W. H. Stevens: Proc. Roy. Soc. (London) 65 (1952) 209.
- [25] H. J. Stapleton, C. D. Jeffries and D. A. Shirley: Phys. Rev. 124 (1961) 1455.
- [26] M. Loewenhaupt and M. Prager: Z. Phys. B 62 (1986) 195.
- [27] A. J. Freeman and J. P. Desclaux: J. Magn. Magn. Mater. 12 (1979) 11.
- [28] E. Zirngiebl, B. Hillebrands, S. Blumenröder, G. Güntherodt, M. Loewenhaupt, J. M. Carpenter, K. Winzer and Z. Fisk: Phys. Rev. B 30 (1984) 4052.
- [29] M. Koga and H. Shiba: J. Phys. Soc. Jpn. 64 (1995) 4345.
- [30] T. Hotta and K. Ueda: Phys. Rev. B 67 (2003) 104518.
- [31] K. Kubo and T. Hotta: J. Phys. Soc. Jpn. 75 (2006) 013702.
- [32] R. Shiina, H. Shiba and P. Thalmeier: J. Phys. Soc. Jpn. 66 (1997) 1741.
- [33] S. Ishihara, J. Inoue and S. Maekawa: Physica C 263 (1996) 130.
- [34] K. I. Kugel and D. I. Khomskii: Sov. Phys. JETP 37 (1973) 725.
- [35] H. Harima and K. Takegahara: J. Phys.: Condens. Matter 15 (2003) S2081.
- [36] K. Iwasa, L. Hao, K. Kuwahara, M. Kohgi, S. R. Saha, H. Sugawara, Y. Aoki, H. Sato, T. Tayama and T. Sakakibara: Phys. Rev. B 72 (2005) 024414.
- [37] H. Yamauchi, H. Onodera, K. Ohoyama, T. Onimaru, M. Kosaka, M. Ohashi and Y. Yamaguchi: J. Phys. Soc. Jpn. 68 (1999) 2057.
- [38] M. Matsumoto and M. Koga: J. Phys. Soc. Jpn. 73 (2004) 1135.
- [39] M. Matsumoto and M. Koga: J. Phys. Soc. Jpn. 74 (2005) 1686.
- [40] M. Koga, M. Matsumoto and H. Shiba: J. Phys. Soc. Jpn. 75 (2006) 014709.