Experimental Research on the Reactions and Decays of Exotic Nuclei

ChengJian Lin

Nuclear Reaction Group, China Institute of Atomic Energy

54th ASRC International Workshop Sakura-2019
"Nuclear Fission and Structure of Exotic Nuclei"
Japan Atomic Energy Agency, Tokai, Japan, 25-27 March 2019
Research Activities in NRG

Heavy-Ion Reaction

NRG

Exotic Nuclei

Exotic Structure

Eva.

EI

\(^{152}\text{Sm} \), \(^{170}\text{Er} \), \(^{174}\text{Yb} \)

\(^{27}\text{P} \) (Z=15)

\(^{28}\text{S} \) (Z=16)

\(^2\text{He} \) ~20%
1. Potentials of exotic nuclear systems
2. Reactions with weakly-bound nuclei
3. $2p$ emissions from excited states
4. Decays of extremely p-rich nuclei
Optical Model is a successful model to explain the nuclear scattering and reaction, which resembles the case of light scattered by an opaque glass sphere.

Optical Model Potential (OMP):

\[U = V(r) + iW(r) \]

- **attractive**
- **absorptive**

★ phenomenological potential, independent on energy.

★ A basic task in nuclear reaction study is to understand the nuclear interaction potential.

Threshold Anomaly (TA)

A universal phenomenon within the Coulomb barrier energy region

\[U(r; E) = V(r; E) + iW(r; E) \]

\[V(r; E) = V_0(r; E) + \Delta V(r; E) \]

Dynamic polarization potential:

\[\Delta V(r; E) = \frac{P}{\pi} \int_0^\infty \frac{W(r; E')}{E' - E} dE' \]

Dispersion relation (results from the causality)

tightlly-bound nuclear systems

Space

Time

Nonlocality

Dispersion relation

Abnormal TA: weakly-bound nuclei

- Exotic nuclei: weakly-bound & having specified structures (cluster, halo/skin)
- Reactions: easily breakup, strongly coupling to continuum, complex mechanisms

Cluster
- $^6\text{Li} (\alpha+d)$
 - $S_\alpha = 1.47 \text{ MeV}$
- $^7\text{Li} (\alpha+t)$
 - $S_\alpha = 2.47 \text{ MeV}$
- $^9\text{Be} (\alpha+n+\alpha)$
 - $S_n = 1.66 \text{ MeV}$

Halo
- $^11\text{Be} (^{10}\text{Be}+n)$
 - $S_n = 0.50 \text{ MeV}$
- $^6\text{He} (\alpha+2n)$
 - $S_{2n} = 0.98 \text{ MeV}$

Abnormal Threshold Anomaly

- $^9\text{Be}+^{208}\text{Pb}$
- $^9\text{Be}+^{209}\text{Bi}$

JPG 371, 075108 (2010).
Abnormal TA: unstable nuclei

OMPs are usually extracted from the elastic scattering.

\[\Delta \theta = 6 - 11^\circ \]
\[\Delta E = 1.2 - 1.5 \text{ MeV} \]

★ Rather difficult to extract an effective OMP at low energies.

Transfer Method

\[a = b + x \quad \rightarrow \quad b + x \]

\(b \) \(-\rightarrow\) \(A \)

\(A \) \(-\rightarrow\) \(b \)

\[B = A + x \]

Transition reaction \(A(a,b)B \)

Transition amplitude:

\[T = J \int d^3 r_b \int d^3 r_a \chi^{(-)}(\vec{k}_f, \vec{r}_b) \ast \langle bB|V|aA\rangle \chi^{(+)}(\vec{k}_i, \vec{r}_a) \]

4 wave functions are needed,

\(\ast \) two bound states: \(b+x \) & \(A+x \) (single-particle potential model)

\(\ast \) two scattering states: incoming & outgoing (optical potentials)

Proposed: C. J. Lin et al., AIP Conf. Proc. 853, 81 (2006), presented at the FUSION06.

\(^{63}\text{Cu}(^{7}\text{Li},^{6}\text{He})^{64}\text{Zn} \): Phys. Rev. C 95, 034616 (2017).
Two experiments have been done at HI-13 tandem accelerator @ CIAE

Exp1: $E_{\text{beam}} = 42.55, 37.55, 32.55, 28.55, 25.67$ MeV – high energies
【2004.8】

Exp2: $E_{\text{beam}} = 28.55, 25.67, 24.3, 21.2$ MeV -- low energies
【2016.4】

★ Angular distributions of both elastic scattering and transfer were measured.

2 Telescopes: SSSD(20\(\mu\)m) + DSSD(60\(\mu\)m) + QSD(100\(\mu\)m)
Results: OMPs of $^6\text{He}+^{209}\text{Bi}$

- OMPs of the $^6\text{He}+^{209}\text{Bi}$ system are determined precisely for the first time;
- The decreasing trend in the imaginary part is observed, and the threshold energy is about 13.73 MeV (~0.68 V_B);
- The behavior of real part looks normal, i.e. like a bell shape around the barrier;
- The dispersion relation does NOT hold in this system.

L. Yang, C.J. Lin*, H.M. Jia et al., Phys. Rev. Lett. 119, 042503 (2017);
Discussions

★ Dispersion relation results from causality, connecting real and imaginary part;
★ Any wave/particle should follow this relation when it passes through a media;
★ The dispersion relation is not applicable for exotic nuclear systems.

Possible reasons:

• Causality → dispersion relation
 stable systems: causality ↔ analyticity

• Cauchy integration
 infinity poles (breakup) & off-axis (multi-process)

• Negative Index of Refraction
 causality based criteria must be used with care

• Locality vs. non-locality
 equivalent local potential in Schrödinger equation

$$\text{Cauchy's residue theorem}$$

Negative Index of Refraction?
Topics

1. Potentials of exotic nuclear systems
2. Reactions with weakly-bound nuclei
3. $2p$ emissions from excited states
4. Decays of extremely p-rich nuclei
Reactions with Exotic Nuclei

RIBs experiments

♠ Elastic scattering
3-body, 4-body
CDCC ...

♠ Fusion/Reaction
TF = ICF + CF ...

♠ Breakup/transfer
Effects & mechanisms

Reaction mechanism

How to identify the different reaction process?

complete-kinematics measurement

2-body kinematics

3-body kinematics

Same products
Experiments

★ Complete-kinematics measurement ; ★ Reactions induced by ^7Be, ^8B, ^{17}F ...

RIBLL: $^{17}\text{F}+^{89}\text{Y},^{208}\text{Pb},^{7}\text{Be}+^{209}\text{Bi}$

CRIB: $^{17}\text{F}+^{12}\text{C},^{58}\text{Ni},^{8}\text{B}+^{120}\text{Sn}$

RIBLL separator at IMP

CRIB separator at CNS

40% of 4π

8% of 4π

40/60 μm DSSD

300 μm QSD

1-1.5 mm QSD

2019/5/2

Sakura2019@JAEA
Angular distribution of quasi-elastic scattering.
(OMP & CDCC by Lei Jin)
Preliminary Results: $^{17}\text{F}^+{}^{58}\text{Ni}$

Angular distribution of **breakups/transfer**
[Cf. Lei Jin & A. M. Moro, PRL 122, 042503 (2019)]

Preliminary conclusions:

- The non-elastic breakups are dominant;
- Fusions are suppressed at energies above the barrier but enhanced below the barrier.
★ Exclusive breakup \(^{16}\text{O}-p\)

Our result: \(\sigma \sim 1.2 \text{ mb} @ 63 \text{ MeV}\);
Liang’s result: \(\sigma \sim 15.6 \text{ mb} @ 170 \text{ MeV}\).

[J.F. Liang et al., PLB 681, 22 (2009).]

Why are the breakup cross sections so low?

• Screen effects due to the dynamic polarization?

• Transfers are dominant?

• …

\(^8\text{B}+^{120}\text{Sn}\) experiment will be performed at CNS/RIKEN (2 - 16 Apr., 2019)

\(^{17}\text{F} (S_p = 0.601 \text{ MeV}), \quad ^8\text{B} (S_p = 0.136 \text{ MeV})\)
1. Potentials of exotic nuclear systems
2. Reactions with weakly-bound nuclei
3. \(2p\) emissions from excited states
4. Decays of extremely \(p\)-rich nuclei
Exotic decays of p-rich nuclei

Bound states: β-delayed particle emissions
Unbound states: directly particle emissions

- Structures of p-rich nuclei close to/beyond the drip-line
- Effective interaction – pairing, isospin non-conserving (INC), three-body force
- Initial state interaction (ISI), final state interaction (FSI), quantum entanglement
- Nuclear astrophysics – (p,γ), (2p,γ), (α,γ) ... processes
Overview of our research

- Started from 2004
- RIBLL@HIRFL (Lanzhou)
- **In-flight** decay
 (Ex. states 2p emissions)
 \[28,29\text{S}/27,28\text{P};\]
 \[17,18\text{Ne}.\]
- **Implantation** decay
 (G.S. \(\beta p, \beta 2p...\))
 \[36,37\text{Ca};\]
 \[27\text{S}/26\text{P}/25\text{Si};\]
 \[22\text{Si}/20\text{Mg};\]
 \[23\text{Si}/22\text{Al}/21\text{Mg};\]
 \[24\text{Si}/23\text{Al}.\]
In-flight decays

\(2p\) emissions from high-lying excited states and related topics

AIP CP 961, 117 (2007); NPA 805, 403 (2008); AIP CP 1165, 106 (2009); CPL 26, 032301 (2009); PRC 80, 014310 (2009); PRC 82, 064316 (2010); NPA 834, 450c (2010); AIP CP 1409, 98 (2011); SCPMA 54(S1), S73 (2011); PST 14, 317 (2012); PLB 727, 126 (2013); JPS CP 1, 013026 (2014); NPR 33, 160 (2016).

2019/5/2 Sakura2019@JAEA
Exp. setup 1

RIBLL Experimental Setup 2007

Note:
Collimators: PPAC1: φ30 mm; PPAC2: φ20 mm.
ΔE: 300μm Si ΔE detector, combined with TOF (150 μs).
197Au: target, 200-250 μm, φ28 mm.
D1,D2,D3: 300μm Si, 48mm×48mm.
D4: 1000μm Si detector with 4 segments, 50mm×50mm.
X1,Y1,X2,Y2: 300μm Si strip detectors, each of 216 segments.
CSI: CSI(Tl)+PIN detectors, 20 mm length, total length 1500 mm.

Complete-kinematics measurements

2019/5/2 Sakura2019@JAEA
Exp. setup 2

Detector array for 28,29S experiment

Secondary target: 197Au, 100 µm

SD: Silicon detectors, 325, 1000 µm

SSSD: Single sided Silicon Strip Detectors with 2 mm in the width and 0.1 mm in the interval for the construction of the particle trajectories

CsI(Tl) array: 6 × 6 lattices, each 15 × 15 × 20 mm, read out through PIN photodiodes.
2p-decay modes

$2p$ emission – three extreme decay modes

2He decay 3-body simultaneous decay 2-body sequential decay

Relativistic-kinematics reconstruction for 29S \rightarrow 27Si+p+p events

q_p^{cm} (MeV/c) vs. φ_p^{cm} (deg)

E_x (MeV) vs. Counts

27Si+p+p

7.4 10.0
Diproton emissions were observed in ^{29}S but not in ^{28}P.

^{29}S: C.J. Lin, X. X. Xu, H. M. Jia et al., PRC 80, 014310 (2009);

^{28}P: X. X. Xu, C.J. Lin, H.M. Jia et al., PRC 81, 054317 (2010).
2p emission: $^{28}\text{S}/^{27}\text{P}$

⭐ Diproton emission is enhanced by 2p halo-like states.

2p emission & 2p halo

2p halo/skin in proton-rich S isotopes

Decay scheme of 29S

Ground state

6Be, 12O, 16Ne, 19Mg, 45Fe, 48Ni, 54Zn

Beyond 1p drip-line

2p resonance state

Excited state:

14O, 17,18Ne, 28,29S,

2p valence pair

above 2p emission threshold

2p correlated emission

weak link with core (decoupled)

2p halo/skin
Momentum correlation functions & HBT analyses

\[\langle r_{pp}^2 \rangle^{1/2} = 5.17 \text{ fm} \]
\[\langle r_{c-pp}^2 \rangle^{1/2} = 3.4 \text{ fm} \]
\[\Theta_{pp} = 74.5^\circ \]

BCS-BEC crossover

Hagino's results (theory): 76.64°

cf: T. Oishi et al., PRC 82, 024315 (2010).

Question: How to describe $2p$ emission in precise?

Initial state (3-body model) [T. Oishi et al., PRC 82, 024315 (2010).]

Tunneling → Propagation

Diagram:
- Corresponds to the energy-distance model
- Depicts correlated and free protons

Discussions 2019/5/2
Sakura2019@JAEA
1. Potentials of exotic nuclear systems
2. Reactions with weakly-bound nuclei
3. $2p$ emissions from excited states
4. Decays of extremely p-rich nuclei
Implantation decays

β-decay spectroscopy of nuclei close to the proton drip line

Exotic decays: $\beta\gamma$, βp, $\beta 2p$...

23Al, 24Si: NIMA 804, 1 (2015).
22Si: PLB 766, 321 (2017).
20Mg: PRC 95, 014314 (2017).
22Al: NST 29, 98 (2018); PLB 784, 12 (2018).

2012

2013

2014

2015

2016

2017

2018

2019
A detector array for $2p$-decay study by **implantation** method
for lifetime $> 10 \, \mu s$

1p efficiency: 66%; 2p efficiency: 20%
• 150 um + 60 um DSSDs for ion implantations and $\alpha/2\alpha$-decay measurements.
• Others for β-decay measurements and background rejection.

- Implanted close to the back edge of the 150 um DSSD.
- 1α efficiency: >90%; 2α efficiency: 20%

[L.J. Sun et al., NIMA 804, 1 (2005).]
Results 1: $^{22}\text{Si}/^{20}\text{Mg}$

Primary beam: ^{28}Si, 75.3 MeV/u @ 40 enA.

- ^{22}Si: 4×10^{-3} pps @ $8 \times 10^{-4}\%$
- ^{20}Mg: 0.72 pps @ 0.15\%

PID of the secondary beam

βp precursors

$N = 8$

$T_z = -3$

$T_z = -2$

2019/5/2

Sakura2019@JAEA
^{20}Mg

β-spectrum

\[p - \text{spectrum} \]

\[\gamma - \text{spectrum} \]

Counts per 20 keV

Counts per 4 keV

Counts per keV

Decay curve

$T_{1/2} = 90.0 \pm 0.6 \text{ ms}$

$\chi^2/\text{ndf} = 1.14$

The most precise!

L. J. Sun et al., PRC 95, 014314 (2017).

Decay scheme

$^{15}\text{O} + \alpha + p \rightarrow ^{19}\text{Ne} + p$

$S_2 = 3528.5(5) \text{ keV}$

$^{15}\text{O} + \alpha + p$

$S_1 = 3528.5(5) \text{ keV}$

$^{19}\text{Ne} + p$

$S_2 = 2190.1(11) \text{ keV}$

^{20}Na

β-spectrum

γ-spectrum

β-coincident spec.

β-coincident spec.
Peak Energies and BRs

<table>
<thead>
<tr>
<th>Peak</th>
<th>Energy (keV)</th>
<th>BR (%)</th>
<th>Decay Mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>230(50)</td>
<td>2.9(10)</td>
<td>$2p$</td>
</tr>
<tr>
<td>2</td>
<td>680(50)</td>
<td>6.8(14)</td>
<td>βp</td>
</tr>
<tr>
<td>3</td>
<td>1710(50)</td>
<td>1.9(7)</td>
<td>βp</td>
</tr>
<tr>
<td>4</td>
<td>1950(50)</td>
<td>52.0(74)</td>
<td>βp</td>
</tr>
<tr>
<td>5</td>
<td>2110(50)</td>
<td>10.9(21)</td>
<td>βp</td>
</tr>
<tr>
<td>6</td>
<td>2180(50)</td>
<td>6.5(15)</td>
<td>βp</td>
</tr>
<tr>
<td>7</td>
<td>2330(50)</td>
<td>5.1(13)</td>
<td>βp</td>
</tr>
<tr>
<td>8</td>
<td>3550(50)</td>
<td>2.5(9)</td>
<td>βp</td>
</tr>
<tr>
<td>9</td>
<td>5600(70)</td>
<td>0.7(3)</td>
<td>$\beta 2p$</td>
</tr>
</tbody>
</table>

Mass of ^{22}Si

- $\Delta(^{22}\text{Si}) = \Delta(^{22}\text{Al IAS}) + \Delta E_c - \Delta n_H$
 \[\rightarrow S_{2p} = -108 \pm 125 \text{ keV}; \]
- $\Delta(^{22}\text{Si}) = \Delta(^{22}\text{O}) - 2b(A,T)T_Z$
 \[\rightarrow S_{2p} = -15 \text{ keV} \]

The first experimental mass data. The first $\beta 2p$ precursor found in Asian Lab.
Discussions on 22Si/20Mg

Mirror asymmetry \rightarrow INC interaction

$$\delta = \frac{ft^+}{ft^-} - 1$$

<table>
<thead>
<tr>
<th>20Mg \rightarrow 20Na</th>
<th>20O \rightarrow 20F</th>
</tr>
</thead>
<tbody>
<tr>
<td>20Na E^* (keV)</td>
<td>J^π</td>
</tr>
<tr>
<td>983.9(22)</td>
<td>1$^+$</td>
</tr>
<tr>
<td>2998(13)</td>
<td>1$^+$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>22Si \rightarrow 22Al</th>
<th>22O \rightarrow 22F</th>
</tr>
</thead>
<tbody>
<tr>
<td>22Al E^* (keV)</td>
<td>br (%)</td>
</tr>
<tr>
<td>1170(50)</td>
<td>5.1(3)</td>
</tr>
<tr>
<td>2400(50)</td>
<td>60.6(65)</td>
</tr>
</tbody>
</table>

Mass \rightarrow Three-Body Force

PRL110,022502(2013).

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$NN + 3N$</td>
<td>$NN + 3N$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$N = 8$</td>
<td>[IMME]</td>
<td>sd</td>
<td>$sdf_{7/2}p_{3/2}$</td>
</tr>
<tr>
<td>18Ne</td>
<td>3.92</td>
<td>4.05</td>
<td>3.76</td>
</tr>
<tr>
<td>19Na</td>
<td>-0.32</td>
<td>-0.32</td>
<td>-0.26</td>
</tr>
<tr>
<td>20Mg</td>
<td>2.66</td>
<td>2.83</td>
<td>2.98</td>
</tr>
<tr>
<td>21Al</td>
<td>$[-1.34]$</td>
<td>-2.52</td>
<td>-1.83</td>
</tr>
<tr>
<td>22Si</td>
<td>$[1.35]$</td>
<td>0.90</td>
<td>1.71</td>
</tr>
</tbody>
</table>

Ground State Energy (MeV) vs Mass Number A

N=8

2019/5/2
Sakura2019@JAEA
Results 2: ^{27}S

24 βp & $1\beta 2p$ decays

decay scheme

$T_{1/2} = 16.3(2)$ ms
$T = 2$
$5/2^+$

β^+
$\Delta = 17678(77)$ keV

$Q_{EC}=18337(78)$ keV

$E'(keV)$
F
$br(\%)$

The most precise!
Daughter: 27P

βp & $\beta\gamma$ were measured simultaneously for the first time.

- **Branch ratios pinned down**
- **Precise energy & mass data**

- $T_{1/2} = 16.3(2)$ ms
- $5/2^+$
- $\Delta = 17638(96)$ keV
- β^+
- $Q_{EC} = 18297(97)$ keV
- $E_p = 318(8)$ keV
- $I_{p1} = 23.1(21)\%$
- $E_{p2} = 762(8)$ keV
- $I_{p2} = 8.9(10)\%$
- $5/2^+$
- $1569(12)$
- $8.9(10)$
- $3/2^+$
- $1125(2)$
- $54.2(88)$
- $^0_+\rightarrow \gamma_1$ $1125(2)$
- $\Delta = -7141.0(1)$ keV
- γ_1 $I_{\gamma 1} = 31.1(86)\%$
- $1/2^+$
- 27^P
- $\Delta = -659(9)$ keV
The Galactic ^{26}Al puzzle

The $^{26}\text{Si}(p,\gamma)^{27}\text{P}$ reaction competes with the β decay of ^{26}Si to $^{26}\text{Al}^m$, and the latter can produce $^{26}\text{Al}^g$ via thermal excitations. Thus, the production and destruction of ^{26}Si by proton capture should be influential in determining the amount of the $^{26}\text{Al}^m$ and $^{26}\text{Al}^g$ produced by the equilibrium.

Explosive hydrogen burning scenarios

Comparison of the calculated thermonuclear reaction rates from the $3/2^+$ resonance contribution.

Collaborators

Thanks to all the collaborators

1 Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
2 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
3 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
4 Department of Physics, The University of Hong Kong, Hong Kong, China
5 College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
6 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
7 Department of Physics, Beihang University, Beijing 100191, China
8 School of Physics and Astronomy, Yunnan University, Kunming 650091, China
9 School of Physical Science and Technology, Southwest University, Chongqing 400044, China
10 Fundamental Science on Nuclear Safety and Simulation Technology Laboratory,
11 Harbin Engineering University, Harbin 150001, China
12 School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
13 Center for Nuclear Study, University of Tokyo, RIKEN campus, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
14 Dipartimento di Fisica, Universita di Padova, via F. Marzolo 8, I-35131 Padova, Italy
15 Istituto Nazionale di Fisica Nucleare-Sezione di Padova, via F. Marzolo 8, I-35131 Padova, Italy
16 Department of Physics, Sungkyunkwan University, Jongno-gu 25-2, Sungkyunkwan-ro 110745, Seoul
17 Department of Physics, University of Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy
18 University of Catania, Sicily, Italy

... ...
Thank you for your attention.