Nuclear Structure of Odd-Au Isotopes

Martin Venhart

Department of Nuclear Physics, Institute of Physics, Slovak Academy of Sciences Presidium of Slovak Academy of Sciences

John L. Wood

Georgia Institute of Technology, Atlanta, Georgia, USA

On behalf of

IS521 collaboration (CERN-ISOLDE: Institute of Physics, University of Liverpool, iThemba Labs) **JR115 collaboration** (University of Jyväskylä, University of Liverpool, Institute of Physics)

Neutron-deficient Hg isotopes = region of beta-delayed fission

Martin Venhart: Structure of Odd-Au Isotopes

Neutron-deficient Hg isotopes = region of beta-delayed fission

Martin Venhart: Structure of Odd-Au Isotopes

How can we use odd-Au isotopes to understand the structure of Hg?

- An odd particle acts as a probe of the core
 - Information on independent particle states
 - Information on deformation: axial and triaxial shapes
 - Information on pairing from blocking
 - Identification of intruder states free of mixing
 - Information on rotational collectivity
- Need of beta decay studies non-yrast states
- Need of in-beam studies rotational bands

• One way how towards understanding even-even Hg isotopes goes through odd-Au isotopes

Particle-core coupling approach: Meyer-ter-Vehn model

Martin Venhart: Structure of Odd-Au Isotopes

Meyer-ter-Vehn model: comparison with the data

Martin Venhart: Structure of Odd-Au Isotopes

Meyer-ter-Vehn model: comparison with the data

Martin Venhart: Structure of Odd-Au Isotopes

Which orbitals are involved in odd-Au isotopes?

Which orbitals are involved in odd-Au isotopes?

Which orbitals are involved in odd-Au isotopes?

Martin Venhart: Structure of Odd-Au Isotopes Nuclear Fission and Structure of Exotic Isotopes, Japan Atomic Energy Agency (JAEA), March 25 – 27, 2019, Tokai

Roadmap to odd-Au isotopes: negative-parity structures

Martin Venhart: Structure of Odd-Au Isotopes

Nuclear Fission and Structure of Exotic Isotopes, Japan Atomic Energy Agency (JAEA), March 25 – 27, 2019, Tokai

E. F. Zganjar *et al.*, Phys. Lett. **58B**, 159 (1975).

Shape coexistence in even-even Hg isotopes

- Deformed configuration reaches the minimum close to N = 104 (midshell point)
- Similar picture exists also for even-Pt isotopes
- Therefore four types of excitations should occur in odd-Au isotopes close to midshell point
- Distinct groups of states are expected
- Electric monopole transitions occur

Martin Venhart: Structure of Odd-Au Isotopes

Shape coexistence in even-even cores

Martin Venhart: Structure of Odd-Au Isotopes

Martin Venhart: Structure of Odd-Au Isotopes

Experiment IS521 at CERN-ISOLDE: TATRA system

- TApe TRAnsportation system inspired by 8-track tapes
- Rapidly quenched material: metallic glass is used to transport radioactive samples (deposition of ISOLDE beam)
- Operated at 3 x 10⁻⁸ mbar
- Windowless LN₂ cooled detector was used
- Very good resolution for conversion electrons
- Broad Energy Germanium detector (first-time used for nuclear structure)

V. Matoušek et al., Nucl. Instrum. And Meth A 812, 118 (2016).

Martin Venhart: Structure of Odd-Au Isotopes

Martin Venhart: Structure of Odd-Au Isotopes

Martin Venhart: Structure of Odd-Au Isotopes

Level scheme construction with BEGe detector

- Instrumentation: Pixie-16 DAQ
- Corresponds to 32768 channels ADC
- Apporximately 1 MeV range for the BEGe, i.e. 27 eV per channel
- (Almost) ideal gaussian peak shape
- (Almost) linear background
- Rydberg-Ritz combination principle to 30 eV precision
- System is combined with "standard" germanium detectors for coincidences

M. Venhart *et al.*, Nucl. Instrum. And Meth A **812**, 118 (2016).

Martin Venhart: Structure of Odd-Au Isotopes

Subtraction of daughter activities using time structure of the data

M. Venhart et al., Nucl. Instrum. And Meth A 812, 118 (2016).

Martin Venhart: Structure of Odd-Au Isotopes

Subtraction of daughter activities using time structure of the data

Conversion electrons

 Resolution 1.5 keV for electrons above 100 keV

Partial level scheme of ¹⁸³Au isotope

Martin Venhart: Structure of Odd-Au Isotopes

Research programme of odd-Au isotopes - summary

- Commissioning of the system:
 - New ¹⁸³Au level scheme was constructed previous level scheme contained serious mistakes
 - ¹⁸¹Au level scheme constructed for the first time (without electrons)
 - E0 transitions identified in ¹⁸³Au
- Reason of failure of previous studies: insufficient resolution and absence of gamma-electron coincidences
- Future: studies of ^{179,181,183,185,187,189}Au isotopes with these techniques: Also know level schemes need revision
- Several interesting new issues found in odd-Au systematics
- In-beam studies in Jyväskylä complement decay experiments

Jurogam2 spectrometer at JYFL

Intruder 0⁺ configuration in ¹⁷⁸Hg

M. Venhart et al., Phys. Rev. C 95, 061302(R) (2017).

Intruder 0⁺ configuration in ¹⁷⁸Hg

List of collaborators

- Institute of Physics, Slovak Academy of Sciences
 - Martin Venhart
 - Martin Veselský
 - Ján Kliman
 - Stanislav Hlaváč
 - Vladislav Matoušek
 - Peter Švec
 - Andrej Herzáň
 - Paresh Prajapati
 - Anton Repko
 - Matúš Sedlák
 - Matúš Balogh
 - Robert Urban
 - Jozef Klimo
 - Monika Bírová
 - Andrej Špaček
 - Lukáš Holub
 - Jakub Krajňák

- Georgia Institute of Technology
 - John Wood

• University of Liverpool

- Robert Page
- Dave Joss
- Rodi Herzberg
- Andy Boston
- Laura Harkness-Brennan
- Dan Judson
- Anima Patel
- Fuad Ali
- Carl Unsworth

• University of Jyväskylä

- Cath Scholey
- Paul Greenlees
- Rauno Julin
- Matti Leino
- Janne Pakarinen
- Tuomas Grahn

• CERN-ISOLDE

- Thomas Cocolios
- Magdalena Kowalska
- Maria Borge

• iThemba Labs

- Lucky Makhatini
- Rob Bark
- Elena Lawrie

Conclusions

- Broad Energy Germanium detector is an excellent choice for decay studies with large density of excited states
- O⁺ intruder state in ¹⁷⁸Hg is different from heavier isotopes
 - Life times measurement?
 - Coulomb excitation?

Acknowledgement:

Slovak Research and Development Agency (project numbers: APVV-0177-11 and APVV-15-0225)

Ministry of Education, Science, Research and Sport of Slovakia

