Fusion Dynamics for Hot Fusion Reactions revealed in Quasielastic Fusion Barrier Distributions

Collaborators

Taiki Tanaka^{1,2}, Kosuke Morita^{1,2}, Kouji Morimoto¹, Daiya Kaji¹, Hiromitsu Haba¹, Rose Ann Boll³, Nathan T. Brewer^{3,4}, Shelley Van Cleve³, David Jarvis Dean³, Satoshi Ishizawa^{1,5},
Yuta Ito¹, Yukiko Komori¹, Katsuhisa Nishio⁶, Toshitaka Niwase^{1,2},
B. C. Rasco^{3,4}, James B. Roberto³, Krzysztof P. Rykaczewski⁷, Hideyuki Sakai¹, Daniel W. Stracener³, and Kouichi Hagino⁸

¹RIKEN, ²Kyushu university, ³ORNL, ⁴JINPA, ⁵Yamagata university,
 ⁶Japan Atomic Energy Agency, ⁷ORNL Physics Division,
 ⁸Tohoku university

Introduction

 $\sigma_{\rm ER}$ strongly depends on the incident energy.

Fusion process of heavy reaction system

Synthesis S.H.N by using fusion reaction — Incident energy : near the coulomb barrier

Quasielastic scattering = Information of the fusion barrier distribution

What is the Coulomb barrier?

Measurements of barrier distributions

-From fusion cross-section

How to measure the barrier heights?

-From quasielastic scattering at large scattering angles This work

Quasielastic scattering = Except fusion reaction (Elastic scattering, Inelastic scattering...)

Detection of nucleus which recoiled by coulomb barrier

Reflection probability

bility $R = \frac{\left(\frac{d\sigma}{d\Omega}\right)_{QE}}{\left(\frac{d\sigma}{d\Omega}\right)_{R}}$ Quasielastic(QE) scattering cross-section Rutherford cross-section

Barrier distribution

 $D_{QE}(E) = -\frac{d}{dE} \left(\frac{S_{QE}(E, \rho)}{S_R(E, \rho)} \right)_{\text{H. Timmers et al., Nucl. Phys. A 584, 190 (1995).}}_{\text{K. Hagino et al., Phys. Rev. C 69, 054610 (2004).}}$

Impact parameter $b \propto$ Angular momentum L

Deriving the fusion barrier $B_{\rm fu}$ ($L \sim 0$) directly

Measurements of barrier distributions with GARIS

Upper limit for deep-inelastic scattering events

S. Mitsuoka et al., Phys. Rev. Lett. 99, 182701 (2007). 14

Comparison with coupled-channels calculation CCFULL*

····· Single channel (without any coupling)

* K. Hagino *et al.*, Comput. Phys. Comm. **123** (1999) 143 15

Comparison with coupled-channels calculation CCFULL

Single channel (without any coupling)Deformation

[3] S. Raman et al., At. Data Nucl. Data Tables 36, 1 (1987).

Barrier distributions are strongly affected by the deformation.

Comparison with coupled-channels calculation CCFULL

Barrier distributions are strongly affected by the deformation.

+ Improvement by excited states and 1n transfer

48Ca+248Cm

Comparison with barrier distributions and $\sigma_{\rm ER}$

Peaks of the $\sigma_{\rm ER}$ appear well above the average Coulomb barrier $B_0 (d\sigma_{\rm OE} / d\sigma_{\rm R} = 0.5)$

Coulomb barrier heights for deformed target nucleus

 σ_{ER} values are enhanced at the energy which corresponds to a compact collision geometry with the projectile impacting the side of the deformed target nucleus.

- ✓ Measurement of the barrier distribution for the reactions ²²Ne+²⁴⁸Cm, ²⁶Mg+²⁴⁸Cm, ⁴⁸Ca+²³⁸U and ⁴⁸Ca+²⁴⁸Cm
- ✓ Fusion barrier B_{fu} ($L \sim 0$) directly derived.

- ✓ Comparison with the experimental results and coupled-channels calculation
 → Barrier distributions are strongly affected by the deformation.
 + Improvement by excited states and 1n transfer
- ✓ Comparison with the experimental barrier distributions and $\sigma_{\rm ER}$
 - \rightarrow Peaks of $\sigma_{\rm ER}$ appear between B_0 and $B_{\rm side}$
 - $\rightarrow \sigma_{\rm ER}$ values are enhanced at the energy which corresponds to a compact collision

180 190 200 210

48Ca+238U

^{0.20} 3p/(⁴op/³⁰)/dE 0.10 0.05

0.00

Thank you for your attention.