54th ASRC International Workshop Sakura-2019 "*Nuclear Fission and Structure of Exotic Nuclei*" Japan Atomic Energy Agency (JAEA), Tokai, Japan

I. Velocity filter SHELS: performance, experimental results and plans II. Status of the Factory of Superheavy Elements

Alexandr Svirikhin

Flerov Laboratory of Nuclear Reactions, Joint Institute for Nuclear Research Dubna, Russia

The SHELS colaboration

A. Yeremin, M. Chelnokov, V. Chepigin, A. Isaev, I. Izosimov, D. Katrasev, A. Kuznetsova, O. Malyshev, Yu. Popov, A. Popeko, E. Sokol, A. Svirikhin,

M. Tezekbaeva FLNR, JINR, Dubna, Russia

K. Hauschild, A. Lopez-Martens, R. Chakma CSNSM, IN2P3-CNRS, Orsay Campus, France O. Dorvaux, B. Gall, K. Kieran, M. Cedric, Z. Asfari IPHC, IN2P3-CNRS, Strasbourg, France J. Piot , Ch. Stodel, D. Ackermann, H. Savajols GANIL, France

D. Tonev, E. Stefanova, Institute for Nuclear Research and Nuclear Energy, Sofia, Bulgaria

B. Andel, P. Mosat, S. Antalic Comenius University of Bratislava, Slovakia

C. Borcea, R. Borcea IFIN-HH, Bucharest, Romania

S. Hofmann, J. Maurer, S. Heinz GSI. Darmstadt, Germany

J. Gehlot, N. Madhavan IUAC, New Dehli, India

- Determination of the partial half-lives of SF heavy nuclei
- Measure of TKE of fission fragments from the spontaneous fission of heavy shortlived isotopes.
- Measure of the average number and determining the multiplicity distribution of prompt neutrons.
- Study of the SF isomers.

Gamma Alpha Beta Recoil Investigation with the Electromagnetic Analyser

GABRIELA

- \circ Study of the decay properties of heavy nuclei, isomeric and ground states, by α , β , γ -spectroscopy of mother (implanted) and daughter products of the evaporation residues.
- Study of the single particle level structure in Fm-Sg region, by moving away from the N=152 towards the N=162 shell.
- Definition excitation energy, spin and parity of nuclear levels.

First stage - years 2010 - 2013

First stage - years 2010 - 2013

New ion optical scheme MQ-MQ-MQ-ES-MS-MS-ES-MQ-MQMQ-MS Improvement of slow ERs transmission

First stage - years 2010 - 2013

New ion optical scheme MQ-MQ-MQ-ES-MS-MS-ES-MQ-MQMQ-MS Improvement of slow ERs transmission

Table 3. Principal components of SHELS.

Quadrupole magnetsMaximum field gradient13 T/mEffective length38 cmAperture radius10 cm

 $\begin{array}{rl} \mbox{Electrostatic sectors} \\ \mbox{Maximum field gradient} & 40 \ \rm kV/cm \\ \mbox{Effective length} & 65.7 \ \rm cm \\ \mbox{Distance between plates} & 10\div20 \ \rm cm \\ \mbox{Nominal deflection angle} & 8^{o} \end{array}$

Magnetic sectors D22-1,2

Maximum field strength	0.8 T
Effective length	$59.7 \mathrm{cm}$
Gap hight	13.5 cm
Nominal deflection angle	22^{o}

Magnetic sector D8

Maximum field strength	0.2 T
Effective length	$58.8 \mathrm{~cm}$
Gap hight	$14 \mathrm{cm}$
Nominal deflection angle	80

SHELS Focal plane 11 Detector Separator for Heavy ELement 10 **S**pectroscopy Distance in Meters **Time of Flight** Magnetic Sector D8 Quadrupole **Triplet 2 Electric Sector 2** Magnetic Sector D22-2 Magnetic Sector D22-1 **Beam Stop Electric Sector 1** Beam Quadrupole **Triplet 1** Target Wheel

Tests 2013-2015

Table 5. Test reactions studied at the velocity separator SHELS.

Reaction	Beam energy (MeV)	$\begin{array}{c} \text{Target} \\ \text{thickness} \\ (\text{mg/cm}^2) \end{array}$	ERs old	transmission new	Ref.
22 Ne(238 U,4–5n) 255,256 No	115	$0.35 (U_3 O_8)$	0.01		
22 Ne(208 Pb,4n) 226 U	117	0.36 (PbS)	0.02		
$^{22}Ne(^{206}Pb,4n)^{224}U$	117	0.23 (metal)	0.02	<u></u>	[11]
22 Ne(198 Pt,5-7n) $^{213-215}$ Ra	115-125	0.30 (metal)	0.03	0.040 ± 0.015	[12]
22 Ne $(^{197}$ Au,4-6n $)^{213-215}$ Ac	120	0.35 (metal)	0.03	0.065 ± 0.030	[12]
40 Ar(208 Pb,2-3n) 245,246 Fm	237	0.36 (PbS)	0.20	0.4	[13]
50 Ti $(^{208}$ Pb $, 2n)^{256}$ Rf	237	0.36 (PbS)	0.20	0.3 ± 0.1	[14]
${ m ^{50}Ti}({ m ^{164}Dy,3-5n})^{ m 209-211}{ m Ra}$	240	$0.3 (Dy_2O_3)$	0.3	0.4	[13, 15]

SHELS Focal plane Detector Separator for Heavy ELement 10 **S**pectroscopy Distance in Meters **Time of Flight** Magnetic Sector D8 Quadrupole **Triplet 2 Electric Sector 2** Magnetic Sector D22-2 Magnetic Sector D22-1 **Beam Stop Electric Sector 1** Beam Quadrupole **Triplet 1** Target Wheel

Table 3. Principal components of SHELS.

Quadrupole magnetsMaximum field gradient13 T/mEffective length38 cmAperture radius10 cm

 $\begin{array}{rl} \mbox{Electrostatic sectors} \\ \mbox{Maximum field gradient} & 40 \ \rm kV/cm \\ \mbox{Effective length} & 65.7 \ \rm cm \\ \mbox{Distance between plates} & 10 \div 20 \ \rm cm \\ \mbox{Nominal deflection angle} & 8^o \end{array}$

Magnetic sectors D22-1,2

Maximum field strength	0.8 T
Effective length	59.7 cm
Gap hight	13.5 cm
Nominal deflection angle	22^{o}

Magnetic sector D8

Maximum field strength	0.2 T
Effective length	$58.8~\mathrm{cm}$
Gap hight	$14 \mathrm{cm}$
Nominal deflection angle	80

Table 3. Principal components of SHELS.

Quadrupole magnetsMaximum field gradient13 T/mEffective length38 cmAperture radius15 cm

 $\begin{array}{rl} \mbox{Electrostatic sectors} \\ \mbox{Maximum field gradient} & 40 \ \mbox{kV/cm} \\ \mbox{Effective length} & 65.7 \ \mbox{cm} \\ \mbox{Distance between plates} & 10 \div 20 \ \mbox{cm} \\ \mbox{Nominal deflection angle} & 8^o \end{array}$

Magnetic sectors D22-1,2

Maximum field strength	0.8 T
Effective length	$59.7 \mathrm{~cm}$
Gap hight	13.5 cm
Nominal deflection angle	22^{o}

 $\begin{array}{c} \mbox{Magnetic sector D8} \\ \mbox{Maximum field strength} & 0.2 \mbox{ T} \\ \mbox{Effective length} & 58.8 \mbox{ cm} \\ \mbox{Gap hight} & 14 \mbox{ cm} \\ \mbox{Nominal deflection angle} & 8^{o} \\ \end{array}$

Second stage - years 2014 - 2016

Improvement of GABRIELA detector array

New Si detectors : larger + more strips

- \Rightarrow 2 x ERs detection efficiency
- \Rightarrow higher CE detection efficiency

Focal plane DSSD

- ✤ 48x48 DSSSD
- * the thickness is $300 \ \mu m$
- the sensitive area is 58 mm²
- ✤ the pos. resolution is 1 mm²
- Energy resolution 12-15 keV

Side detectors 4x16-strip Si-plates (no pos. sens.)

Detection efficiency: For alpha-particles - **80 %** For SF-fragments - **100 %**

Second stage - years 2014 - 2016

Improvement of GABRIELA detector array²

New Si detectors : larger + more strips

- \Rightarrow 2 x ERs detection efficiency
- \Rightarrow higher CE detection efficiency

Focal plane DSSD

- ✤ 48x48 DSSSD
- * the thickness is $300 \ \mu m$
- the sensitive area is 58 mm²
- the pos. resolution is 1 mm²
- Energy resolution 12-15 keV

Side detectors 4x16-strip Si-plates (no pos. sens.)

Detection efficiency: For alpha-particles - **80 %** For SF-fragments - **100 %**

\Rightarrow 128x128 DSSSD

- $\Rightarrow 500 \,\mu\text{m}$ $\Rightarrow 97.3 \,\text{mm}^2$ $\Rightarrow 0.8 \,\text{mm}^2$
- $\Rightarrow 0.8 \text{ mm}^2$
- 8x(16x32 DSSSD)
 the thickness is 500 μm
 the pos. resolution is 2 mm²

focal plane area increased by 1.7!

Second stage - years 2014 - 2016

Improvement of GABRIELA detector array

7 single crystal Ge-detectors With BGO-shields

7 single crystal Ge-detectors With BGO-shields

1 - 100x100 mm clover Ge-detector 4 - single crystal Ge-detectors All with BGO-shield

⁴⁸Ca(²⁰⁹Bi,2n)²⁵⁵Lr Integral flux 1.4 x10¹⁸

Next stage - years 2019 - 2020

New Detection systems

Further improvement of Ge detectors system (5 Clovers) => higher gamma detection efficiency

Next stage - years 2019 - 2020

New Detection systems Modernization of neutron detector

Neutron detector

54 ³He-counters placed in moderator and surrounded by shield (polyethylene with boron) Dimensions of counters: D=30mm, L=500mm ³He pressure – 7 At

Efficiency for single neutrons: **45 %** (²⁴⁸Cm-source)

Next stage - years 2019 - 2020

New Detection systems Modernization of neutron detector

\circ ability to work in the SHE region (σ ≤ 1 nb)

 unification of silicon detectors and electronics with GABRIELA setup (large DSSSD and position sensitive side detectors)

Next stage - years 2019 - 2020

New Detection systems Modernization of neutron detector

Counters count: **116 (4; 7 At** ³**He)** Efficiency: **57%** (MCNPX) Average neutron lifetime: **24 μs** (MCNPX)

Next stage - years 2019 - 2020

New Detection systems Modernization of neutron detector Counters count: **116 (4; 7 At** ³**He)** Efficiency: **57%** (MCNPX) Average neutron lifetime: **24 μs** (MCNPX)

Isotope	Calculated average number of neutrons,	Measured average number of neutrons,	Calculated average TKE (MeV)	Measured average TKE (MeV)
²⁵⁴ Rf*	4.7	3.87±0.34	209	-
²⁵⁶ Rf	4.6	4.47±0.09	208	-
²⁵⁰ No	4.3	4.38±0.13	202	192±2
^{250m} No	In progress	3.90±0.20	In progress	200±2 MeV
²⁵⁴ No*	In progress	5.07±0.27	In progress	184±2 MeV
²⁵² No	4.1	4.33±0.17	201	198.7**
²⁴⁴ Fm	3.5	3.3±0.3	196	198±15
²⁴⁶ Fm	3.6	3.6±0.5	196	199±4

* - new data (SHELS separator)

** - values from literature

In the present work we used an improved scission-point model (*see A.V. Andreev, Eur. Phys. J.* **A 30**, (2006)) which is powerful in description of various experimental data on binary and ternary fission of heavy nuclei: mass and charge distributions of fission fragments, their kinetic energies, prompt fission neutron multiplicities, etc.

Cross-sections of xn and pxn channels were measured in experiment.

Preliminary experimental results: January 2019, GABRIELA setup

Reactions: ${}^{48}Ca + {}^{204,206,208}Pb = 2n + {}^{250,252,254}No$ **SHELS separator transmission: 32% Beam:** ${}^{48}Ca (18+), 0.4 \text{ p}\mu\text{A}, \text{E}_{1/2} = 225 \text{ MeV}$ **Detectors:** focal plane DSSSD-detector (128×128 strips), 4 side DSSSD-detectors (32×16 strips), 1 clover Ge-detector and 4 Ge-detectors (with BGO shields). **Registration:** α , β , γ and fission fragments.

²⁵⁴No

Target: 360µg/sm² PbS (99.57% of ²⁰⁸Pb); Beam dose: 2.3E18 ⁴⁸Ca ions Correlations: 600 Recoil – Fission Fragment (focal detector) Measured: ff-TKE, cross-section, isomeric states, γ-multiplicity ²⁵²No

> **Target:** 400μg/sm² PbS (99.51% of ²⁰⁶Pb) **Correlations:** 15000 Recoil – Fission Fragment (focal detector)

Measured: ff-TKE (using for calibration), cross-section, γ-multiplicity

²⁵⁰No

Target: 470µg/sm² PbS (99.94% of ²⁰⁴Pb); **Beam dose:** 6E18 ⁴⁸Ca ions **Correlations:** 19000 Recoil – Fission Fragment (focal detector, 0-500 µs), no Re – α correlations **Measured:** ff-TKE, b_{sF}, cross-section (35 nb), isomeric states, γ-multiplicity

Plans for 2019-2020

Reactions	Goals
²³⁸ U(²² Ne, xn) ^{260-x} No	Focal plane spectroscopy, xn-cross sections
²⁰⁸ Pb(⁵⁴ Cr, xn) ^{262-x} Sg	SF with neutron detector
²⁰⁸ Pb(⁴⁸ Ca,2n) ²⁵⁴ No	Study of the decay modes, k-isomers.
²⁴² Pu(²² Ne,xn) ^{264-x} Rf	Study of the decay modes.

New insights into the ²⁴³Am+⁴⁸Ca reaction products previously observed in the experiments on elements 113, 115 and 117

Existing experimental data: DGFS: 2.5x10¹⁹ Beam energy 240 - 243 M9B, 31 chains (no gamma) TASCA + TASISpec: 6x10¹⁸ Beam energy 242 and 245 M9B, 22 chains (16 gamma quanta) *Nuclear Instruments and Methods in Physics Research A* 622 (2010) 164–170

Expectations (SHELS + GABRIELA) Cross section ~ 8 pb Target thickness ~ 10^{18} at/cm² Beam intensity ~ $5x10^{12}$ pps If $\varepsilon_{\text{transmission}} \sim 40 \%$ 1 event per day. 100 days (flux about $3x10^{19}$) about 100 events \rightarrow 75 gamma quanta

Yu. Ts. Oganessian et al.,Phys. Rev. C 87, 014302 (2013) D. Rudolph et. al., PRL 111, 112502 (2013)

```
DC280 + GNSIII + GABRIELA
Cross section ~ 8 pb
Target thickness ~ 10^{18} at/cm<sup>2</sup>
Beam intensity ~ 1.5 \times 10^{13} pps
If \varepsilon_{\text{transmission}} ~ 40 %
3 event per day.
100 days (flux about 10^{20})
about 300 events →
215 gamma quanta
```


DC280 + GNSIII + GABRIELA Cross section ~ 8 pb Target thickness ~ 10^{18} at/cm² Beam intensity ~ 1.5×10^{13} pps If $\varepsilon_{\text{transmission}}$ ~ 40 % 3 event per day. 100 days (flux about 10^{20}) about 300 events → 215 gamma quanta

Stand-alone SHE factory with DC-280 cyclotron

DC-280 Main Parameters

Ion sources	Permanent magnet ECR DECRIS-PM - 14 GHz
Injection energy	Up to 80 keV/Z
A/Z range	4÷7.5
Energy	4÷8 MeV/n
Magnetic field level	0.6÷1.3 T
K factor	280
Magnet weight	1000 t
Magnet power	300 kW
Dee voltage	2x130 kV
RF power consumption	2x30 kW
Flat-top dee voltage	2x14 kV
Deflector voltage	Up to 90 kV

Tests of DECRIS-PM at the HV platform of DC-280

Ions for DC-280 tests

40^{Ar+7}, A/Z=5.71 I max=190 μA 40^{Ar+8}, A/Z=5 I max=290 μA

₈₄Kr⁺¹⁴, A/Z=6 I max=65 μA

	BPEMA
E B B B Bucosepse D B.	1 19 Horara RU Browned Luce O
Havansus counts Jeculeticoe it	go SOA. To so proving " posterio" upper balance curryers to OM
время запися	194 los Sy negerium ~ 0 017
режни работы	4:00 I syp = 3, 90 m A
YCKOPREMAR SALE	Uling = - 8 (3, 3, B
частица сти	$\frac{\mathcal{U}_{W_{F}} = -\infty + 3 B}{T}$
THE BE'S	Ten =21 ten p
	70'35 $RP2 = -0.004 + 0.001 - 0.000$
	09:40 Toke pender 18 357 minute werden north
TOK B NOHOINOBOJE	Bea =- Me in hange i ha unge pe
ТОК НА МИШЕНИ	you domaine the your Tal-"
3MUL 3MUL	
26.12.2018	10:10 Tennan c - Inf : (43.8) + Inf 8,4
89 QA3A 1 -2 C. 12 . 2 CIC	10:26 Rouendan kadena morring hechanics na ins
The first accelerated	(da du nefe nyre Ka
K5B THE HIDE decenter dece	(Af + 10, 10, 10, 10, 10, 10)
N гармоники СВЯЗБ реат	U The sala & The Alter adverted
LAKOPOTKA	- De TRoma In was in waster to 28 ((301))
ΦΩ35FA R-A Of oAKr+14	the stand concreasing to si, and sice all
M. KAHAJI I BX-BЫX	U Ner = 735
м. канал 2 вх-вых Im=831.9 А	COLLEND UP IS = 273 A IS 2A = 4/38 3, RPI
ВАКУУМ КАМЕРЫ	I(CM) = 841,6; I on = 800 Å, RP1 ≈ 11 pa A 18+3
токи алементов 10:31 а.т.	12 M A (0+1)
ранспортировки пучка	ВРЕМЯ ОБЛУЧЕНИЯ ЧАС МИН.
	ГОТОВНОСТЪ К ОБЛУЧЕНИЮ ЧАС МИН.
	НАСТРОЙКА ЧАСМИН.
	РЕМОНТ ЧАС. МИН.
rrent at radius of 1700 mm w	as up to 4 uA at injection current of 31
i chi at i autus vi 1700 mmi W	as up to 1 µ11 at injection current of 51
Beam was not extracted	d due to problems with deflector

Beam extraction system

25.03.2019 The Factory of Superheavy Elements inauguration

-0:10 🖑 🖸 📢

Minister of Science and Higher Education of the Russian Federation

Immediate plans

- Carrying out radiation measurements with participation of FMBA representatives.
- Installation of flat-top resonators, installation of regular inflector, improving of vacuum conditions.
- Acceleration of 48 Ca^{+8,+9} 50 Ti^{+8,+9}. Increasing of ion beam intensity, transportation of ion beams to the GFS-2.

First experiments at SHE Factory

Synthesis of new element 119

 σ =50 fb, h_t=0.3 mg/cm², ε_{coll}=0.6, I_{beam}=3 pµA → ≈1 event per month

SHE-Factory building, January 2019

Thank you for your attention!