		1.7 s	1.7 s	2.3 s	4.5 s	510 ms	1.52 s	
	²⁵³ Rf 13 ms	²⁵⁴ Rf ^{23.2 µs}	²⁵⁵ Rf 1.66 s	²⁵⁶ Rf 6.67 ms	²⁵⁷ Rf _{4.82 s}	²⁵⁸ Rf 13.8 ms	²⁵⁹ Rf _{2.63 s}	
# ⁵¹ Lr 150 µs	²⁵² Lr 369 ms	²⁵³ Lr 632 ms	²⁵⁴ Lr 17.1 s	²⁵⁵ Lr 31.1 s	256 Lr 27 s	²⁵⁷ Lr ^{6 s}	²⁵⁸ Lr 3.6 s	
⁵⁰ Νο	²⁵¹ No	²⁵² No	²⁵³ No	²⁵⁴ No	²⁵⁵ No	²⁵⁶ No	²⁵⁷ No	
5 μs	800 ms	2.45 s	_{93.6 s}	_{51.2 s}	211.2 s	2.91 s	_{24.5 s}	
9 Md 23.4 s	²⁵⁰ Md _{52 s}	²⁵¹ Md 4.21 m	²⁵² Md ^{138 s}	²⁵³ Md 12 m	²⁵⁴ Md ^{10 m}	²⁵⁵ Md ^{27 m}	256N *	25
8 Fm	²⁴⁹ Fm	²⁵⁰ Fm	²⁵¹ Fm	²⁵² Fm	²⁵³ Fm	²⁵⁴ Fm	20.0	25
34.5 s	_{96 s}	_{30.4 m}	_{5.3 h}	_{25.39 h}	_{72 h}	194.4 m		1
⁴⁷ ES	²⁴⁸ Es	²⁴⁹ Es	²⁵⁰ ES	²⁵¹ Es	²⁵² Es	²⁵³ Es	²⁵⁴ Es	
1.55 m	_{24 m}	102.2 m	8.6 h	_{33 h}	1.2914442 y	_{20.47 d}	275.7 d	
⁴⁶ Cf	²⁴⁷ Cf	²⁴⁸ Cf	²⁴⁹ Cf	²⁵⁰ Cf	²⁵¹ Cf	²⁵² Сf	²⁵³ Cf	
35.7 h	186.6 m	333.5 d	^{351 y}	13.08 y	900 y	2.645 у	17.81 d	
⁴⁵ Bk	²⁴⁶ Bk	²⁴⁷ Bk	²⁴⁸ Вк	²⁴⁹ Bk	²⁵⁰ Bk	²⁵¹ Bk	252 Bk	
4.95 d	43.2 h	1.38 ky	9 у	327.2 d	192.72 m	55.6 m	108 s	
#uniofsurrey								

Superheavy Dynamics with Time-Dependent Hartree-Fock

5.52 h

۴F۳

Paul D Stevenson University of Surrey, Guildford, UK

Overview

- » Would like to learn about reactions involving ²⁵⁴Es
- » Use techniques based on Static and Time-Dependent Hartree-Fock
- » & Skyrme forces
- » For recent work:
- » How assumed force affects heavy-ion reactions:
 - P. D. Stevenson & M. C. Barton, Prog. Part. Nucl. Phys. 104, 142 (2019)
- » Friction effects in fusion:
 - Kai Wen, M. C. Barton, Arnau Rios Huguet, and P. D. Stevenson, Phys. Rev. C 98, 014603 (2018)
- » Effect of symmetry energy & other nuclear matter properties on fusion:
 - P.-G. Reinhard, A. S. Umar, P. D. Stevenson, J. Piekarewicz, J. A. Maruhn, and V. E. Oberacker, *Phys. Rev.* C 93, 044618 (2016)
- » Fission from TDHF point of view
 - P. M. Goddard, P. D. Stevenson and A. Rios, Phys. Rev. C 92, 054610 (2015)

Input: Skyrme-type density functional

$$\mathcal{E}_{\text{Skyrme}} = \int d^3 r \sum_{t=0,1} \left\{ C_t^{\rho}[\rho_0] \, \rho_t^2 + C_t^s[\rho_0] \, \mathbf{s}_t^2 + C_t^{\Delta \rho} \rho_t \Delta \rho_t + C_t^{\tau} (\rho_t \tau_t - \mathbf{j}_t^2) \right. \\ \left. + C_t^{T} \Big[\mathbf{s}_t \cdot \mathbf{T}_t - \frac{1}{3} (J^{(0)})^2 - \frac{1}{2} (J^{(1)})^2 - (J^{(2)})^2 \Big] + C_t^{\Delta s} \mathbf{s}_t \cdot \Delta \mathbf{s}_t \right. \\ \left. + C_t^{F} \Big[\mathbf{s}_t \cdot \mathbf{F}_t - \frac{2}{3} (J^{(0)})^2 + \frac{1}{4} (J^{(1)})^2 - \frac{1}{2} (J^{(2)})^2 \Big] + C_t^{\nabla s} (\nabla \cdot \mathbf{s}_t)^2 \right. \\ \left. + C_t^{\nabla \cdot J} (\rho_t \nabla \cdot \mathbf{J}_t + \mathbf{s}_t \cdot \nabla \times \mathbf{j}_t) \Big\}$$

The C coefficients are our unknown force coefficients. Can derive from Skyrme parameters or fit directly

$$\rho(\mathbf{r},\mathbf{r}') = \sum_{\sigma,q} \rho_q(\mathbf{r}\sigma,\mathbf{r}'\sigma) = \sum_{i,\sigma,q} \phi_i^*(\mathbf{r}',\sigma,q)\phi_i(\mathbf{r},\sigma,q),$$
All oth

$$\mathbf{S}(\mathbf{r},\mathbf{r}') = \sum_{\sigma,\sigma',q} \rho_q(\mathbf{r}\sigma,\mathbf{r}'\sigma')\langle\sigma'|\hat{\boldsymbol{\sigma}}|\sigma\rangle = \sum_{i,\sigma,\sigma',q} \phi_i^*(\mathbf{r}',\sigma',q)\hat{\boldsymbol{\sigma}}\phi_i(\mathbf{r},\sigma,q),$$
are der

All other coloured symbols are derivatives of these two densities

Ground state properties around ²⁵⁴Es

Constrained HF+BCS Calculation with SLy4 interaction. Using ev8 code from W. Ryssens et al. Comp. Phys. Commun. **187**, 175 (2015)

Ground states of odd-odd ²⁵⁴Es

Frozen Hartree Fock Calculation of potential

$$V_{FHF}(\hat{\mathbf{R}}) = \int d\mathbf{r} \ \mathcal{H}[\rho_1(\mathbf{r}) + \rho_2(\mathbf{r} - \hat{\mathbf{R}})] - E[\rho_1] - E[\rho_2] ,$$

See review by C. Simenel and A. S. Umar, Prog. Part. Nucl. Phys. **103**, 19 (2019)

From Frozen HF Barrier in tip direction: 198.6 MeV Barrier in belly direction: 213.0 MeV

Potential curves interpolated with cubic bsplines

Barrier from TDHF

TDHF dynamical changes in densities upon approach give lower barrier:

Tip configuration barrier @ 193±1 MeV (cf 199 MeV FHF)

Belly configuration not much lowered (<2 MeV)

²⁵⁴Es + ⁴⁸Ca tip configuration

X<-4.5: Z=79 (Au), N=124 X>-4.5: Z=40 (Zr), N= 60 Tmax = 16000 iter = 3200 fm/c = 1 x 10^{-21} s = 1 zs)F

Belly Configuration

9

²⁵⁴Es + ²⁰⁸Pb: Heavier beam

Role of symmetry energy (for ⁴⁸Ca+⁴⁸Ca)

Left frame below = head-on (b=0) collision with SV-sym28 @ 51MeV CM energy. Right frame is same but for SV-sym32

P.-G. Reinhard, A. S. Umar, P. D. Stevenson, J. Piekarewicz, J. A. Maruhn, and V. E. Oberacker, *Phys. Rev.* **C 93**, 044618 (2016)

Variation in Cross-Section

» Compared with the "basic" SV-bas

Exp. Data from A. M. Stefanini, G. Montagnoli, R. Silvestri, L. Corradi, S. Courtin, E. Fioretto, B. Guiot, F. Haas, D. Lebhertz, P. Mason, F. Scarlassara, and S. Szilner, Phys. Lett. B 679, 95 (2009)

Different forces with different nuclear matter parameters follow the experimental data as the CM energy changes

But around barrier, symmetry energy of 32-34 works best

Conclusions & Acknowledgements

- Density functionals predict slight static triaxiality in even-even neighbours of ²⁵⁴Es
- Estimate of Ion-ion potential through Frozen Hartree-Fock Approximation
- Allowing dynamic changes of the density as nuclei approach in TDHF produces modest changes to FHF prediction of barrier height
- reactions with Ca along tip of Es give fusion-fission close above barrier
- reactions Ca into belly of Es give (quasi-)stable triangular configurations lasting O(zs) or longer
- heavy beam particle + Es => transfer, fusion fission
- need Particle Number Projection for more details
- Can learn about symmetry energy of nuclear force from fusion reactions

Thanks to: STFC under grant nos ST/P005314/1 and ST/N002636/1 Collaborators: M. C. Barton (Warsaw), A. S. Umar (Vanderbilt), P.-G. Reinhard (Erlangen), J. A. Maruhn (Frankfurt)

