Total kinetic energy distribution for spontaneous fission of Rf isotopes

54th ASCR International Workshop

JAEA Tokai, 2019

Pavol Mošať

Comenius University in Bratislava

on behalf of SHIP collaboration

Outline

- Spontaneous fission properties
- Synthesis and identification
- Total kinetic energies of 255Rf, 256Rf and 258Rf

Trans-fermium region

²⁵⁵Rf: T_{1/2}=1.68(9) s SF: 58.00%

²⁵⁶Rf: T_{1/2}=6.67(10) ms SF: 99.68 %

²⁵⁸Rf: $T_{1/2}$ =10.1(1.1) ms SF : 95.00 %

Neutron number

[NNDC]

25 March 2019

SAKURA, Tokai 2019

156

158

160

162

Proton number

150

152

154

M. A. Stoyer, Nature 442, 876 (2006).

3¹/₀n

Fission characteristics

Yu. Ts. Oganessian, J. Phys. G, Nucl. Part. Phys. 34, R165 (2007)

Fission characteristics

TKE vs. mass distribution

Production and detection

Production and detection

25 March 2019

Range of fragments

Implantation of ER to STOP detector

25 March 2019

Range of fragments

Implantation of ER to STOP detector

3 possible cases

3 possible cases

Escape to BOX detector

- 30% of all events
- Two dead layers
- Energy reconstruction possible
 - → STOP + BOX amplitude

- 70% of all events (50+20)
- 20% events with incomplete energy

3 possible cases

Detected TKE

Calibration by alpha lines =

= Energy deficit in detected fragments' TKE

Pulse height defect

Difference in detected energy between light (e.g. alphas) and heavy ions (e.g. fragments) with the same kinetic energy

- Dead layer losses
- Not-ionizing interactions with atoms in detector
- Recombination of e-h
 - strongly depends on implantation depths

Corrections needed!!!

Detected TKE

Calibration by alpha lines =

= Energy deficit in detected fragments' TKE

Pulse height defect

Difference in detected energy between light (e.g. alphas) and heavy ions (e.g. fragments) with the same kinetic energy

- Dead layer losses
- Not-ionizing interactions with atoms in detector
- Recombination of e-h
 - strongly depends on implantation depths

Corrections needed!!!

25 March 2019

Detected TKE

Calibration by alpha lines =

= Energy deficit in detected fragments' TKE

Let's prepare the correction to this energy deficit!

งปายการการ การเกิดของเอกร พายา นอกร กา นอเออเอเ

- Recombination of e-h
 - strongly depends on implantation depths

Corrections needed!!!

25 March 2019

Energy deficit in detected TKE (252No)

Effect already studied on ²⁵²No in 2006 at SHIP*

- Why ²⁵²No?
 - Relatively high production cross-section
 - Known <TKE> = 194.3 MeV
 - Close to Rf isotopes in Z and N
 - Implanted in 6 different depths to STOP detector
 - TKE vs. impl. depth

We evaluated previously measured data on ²⁵²No from 2006 and used LISE++ for impl. depths.

*K. Nishio, et al., AIP Conf. Proc. 891, 71 (2007)

*S. Hofmann, et al., Eur. Phys. J. A 32, 251 (2007)

P. Mosat, et al., Acta Phys. Pol. B49, 605 (2018)

*implantation depths calculated by LISE++ (O. B. Tarasov and D. Bazin., Nucl. Instr. Meth. B 266, 4657 (2008).

25 March 2019

Energy deficit in detected TKE (252No)

P. Mosat, et al., Acta Phys. Pol. B49, 605 (2018)

*implantation depths calculated by LISE++ (O. B. Tarasov and D. Bazin., Nucl. Instr. Meth. B 266, 4657 (2008). 25 March 2019 SAKURA, Tokai 2019

SAKURA, Tokai 2019

²⁵⁵Rf <TKE> = 201.2 ± 0.9 MeV FWHM = 31.3 ± 1.7 MeV ²⁵⁶Rf <TKE> = 197.5 ± 1.0 MeV $FWHM = 31.2 \pm 2.0 MeV$ ²⁵⁸Rf <TKE> = 198.5 ± 1.1 MeV

 $FWHM = 28.4 \pm 2.2 \text{ MeV}$

²⁵⁵Rf

 $< TKE >_{L} = 188 \pm 10 MeV$

FWHM₁ = 20 MeV (fixed)

FWHM_H = 20 MeV (fixed)

 $\langle TKE \rangle_{H} = 210 \pm 4 \text{ MeV}$

²⁵⁶Rf

 $< TKE_{L} = 194 \pm 3 \text{ MeV}$ $< TKE_{H} = 217 \pm 4 \text{ MeV}$

 $FWHM_{L} = 20 \text{ MeV} \text{ (fixed)}$

N. Carjan et al., Nucl. Phys. A 942, 97 (2015).

25 March 2019

Summary

- ^{255, 256, 258}Rf produced in fusion-evaporation reactions with ⁵⁰Ti beam and ^{207, 208}Pb and ²⁰⁹Bi targets
- Correction to pulse-height-defect determined using exp. data for TKE of ²⁵²No and ER implantation calculation by LISE++
- Evaluation of <TKE> and study of TKE distributions for ^{255, 256, 258}
 ²⁵⁸Rf

Thank you

Bi-modal fission

"classical cases"

²⁵⁸Fm, ^{259,260}Md or ^{258,262}No
E.K. Hulet et al., Phys.Rev.Lett. 56, 313 (1986)
J. F. Wild, et al., J. Alloy. Comp. 213, 86 (1994)

TKE distributions for Rf isotopes:

- ²⁶⁰Rf, ²⁵⁸Rf reasonable statistics (no bi-modal fission clearly observed)
- ²⁵⁵Rf, ²⁵⁶Rf very limited statistics (<30 counts)

Energy deficit in detected TKE (²⁵²No)

25 March 2019

252No

S. Hofmann et al., Eur. Phys. J. A 32, 251–260 (2007)