

Superheavy element research at RIKEN Nishina Center

Kouji Morimoto

Research Group for Superheavy Element Nishina Center for Accelerator Based Science, RIKEN

54th ASRC International Workshop Sakura-2019 "Nuclear Fission and Structure of Exotic Nuclei" Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Japan 26 March 2019

IUPAC announced discoveries (Dec. 2015) and approved the names (Nov. 2016) of 4 new elements

Prof. Kosuke Morita

Th Pa U Np Pu Am

Prof. Yuri Oganessian

Present Periodic Table

※113番、115番、117番、118番元素については、2016年11月現在バブリックレビュー中

出典:「羽場宏光 *イラスト図解 元素"日東書院本社(2010.5.1)。 「IUPAC ウェブサイト(http://www.iupac.org/)」

Cold fusion \rightarrow **Hot fusion**

Further new element search using <u>cold fusion is hopeless</u> because of its **small production cross-section**.

⁴⁸Ca beam to ⁵⁰Ti, ⁵¹V, ⁵⁴Cr beam (Not easy!) All products Z>112 produced by hot fusion reactions, were produced by using ⁴⁸Ca beam.

Cf (Z=98) is the **heaviest target realistically available**. (²⁴⁴Es(Z=99) is not enough material available for high intensity beam experiment)

Then Cf + Ca → 118(Og) is heaviest element produced by ⁴⁸Ca beam.

We must change ⁴⁸Ca induce reaction to Ti, V or Cr induce reaction.

But the prediction of the **production cross sections are smaller than** ⁴⁸Ca induced reactions.

Combination of Beam and Target

~10 mg ~ μ g (rotating target X)

Example of the cross section predictions of ⁴⁸Ca to ⁵⁰Ti, ⁵¹V, ⁵⁴Cr

predictions: Zagrebaev & Greiner, PRC 2008

Predicted cross sections are less than 50 fb.
But, no one knows real value.
→ We need the reliable predictions !

Strategy of new element search at RIKEN

Past **RILAC** + **GARIS-I** or **GARIS-II** (until end of June 2017)

 $^{-248}$ Cm + 48 Ca \rightarrow Lv(116) \rightarrow See J. Phys. Soc. Jpn. 86, 034201 (2017)

• Study for barrier distributions of ²⁴⁸ (Taiki Tanaka's Talk

²⁴⁹Cf + ⁴⁸Ca -> ²⁹⁷Og + xn See also J. Phys. Soc. Jpn. 87, 014201 (2018)

²⁴⁸Cm + ⁵⁰Tl -> ²⁹⁸Og + xn → interrupted by upgrading

RILAC-II + RRC + GARIS-II (started in Dec. 2017)

- ${}^{248}Cm + {}^{51}V \rightarrow 119 \rightarrow Running!$
- ${}^{248}Cm + {}^{54}Cr \rightarrow 120$ (after the 119)

New RILAC + GARIS-III (will be started early in 2020)

- ${}^{248}Cm + {}^{51}V \rightarrow 119$
- ${}^{248}Cm + {}^{54}Cr \rightarrow 120$ (after the 119)

Key points for Z=119, 120

Predicted cross sections are extremely small. (< 10 fb ?)

High efficiency setup for hot fusion reaction is needed! → Developed new separators GARIS-II and GARIS-III

Higher beam intensity is needed! → Upgrading of RILAC and Ion source

Actinide material for target is needed!

→ Started to Collaborate with ORNL (DOE)

An enormous beam dose is needed!

- \rightarrow Long Beam Time
- → Parallel run (RRC+GARIS-II and new RILAC+GARIS-III)

New Separator GARIS-II and GARIS-III

GARIS-II

GARIS-III

Asymmetric (hot fusion) reaction:

- Small momentum of ERs
- recoil effect of neutron emittions
- multiple scattering with He gas
- → Large angular acceptance Short pass length is needed!

Key points for Z=119, 120

Predicted cross sections are extremely small. (< 10 fb)

High efficiency setup for hot fusion reaction needed! → Developed new separators GARIS-II and GARIS-III

Higher beam intensity needed! → Upgrading of RILAC and Ion source

Actinide material for target needed!

→ Started to Collaborate with ORNL (DOE)

An enormous beam dose needed!

- \rightarrow Long Beam Time
- → Parallel run (RRC+GARIS-II and new RILAC+GARIS-III)

Upgrade plan of RILAC Facility

RILAC Upgrade plan

GARIS-II was moved from RILAC to RRC facility. (in order to continue the research during the upgrade)

GARIS-II was moved at E6 room next to the RIPS. LINAC2 + RRC + GARIS-II became ready in Dec. 2017.

Key points for Z=119, 120

Predicted cross sections are extremely small. (< 10 fb)

High efficiency setup for hot fusion reaction needed! → Developed new separators GARIS-II and GARIS-III

Higher beam intensity needed! → Upgrading of RILAC and Ion source

Actinide material for target needed!

→ Started to Collaborate with ORNL (DOE)

An enormous beam dose needed!

 \rightarrow Long Beam Time

→ Parallel run (RRC+GARIS-II and new RILAC+GARIS-III)

Rotating ²⁴⁸Cm target is ready

We started to collaborate with Oak Ridge National Laboratory, and ²⁴⁸Cm material was already supplied.

Rotating system

Target sector

Key points for Z=119, 120

Predicted cross sections are extremely small. (< 10 fb)

High efficiency setup for hot fusion reaction needed! → Developed new separators GARIS-II and GARIS-III

Higher beam intensity needed! → Upgrading of RILAC and Ion source

Actinide material for target needed! → Started to Collaborate with ORNL (DOE)

An enormous beam dose needed!

- \rightarrow Long Beam Time \rightarrow New element search has first priority.
- → Parallel run (RRC+GARIS-II and new RILAC+GARIS-III)

Status of new RILAC Facility

GARIS-III just installed to RILAC experimental hall

New RILAC and GARIS-III will be ready in biginning of 2020.

GARIS-II

Status of experiment for new element

GARIS-II was moved at E6 room next to the RIPS. LINAC2 + RRC + GARIS-II became ready in Dec. 2017.

System check and detector calibration for new configuration RRC + GARIS-II.

DSSD was calibrated and energy resolution was deduced about 25keV(FWHM)

RRC+GARIS-II

System check and detector calibration for new configuration RRC + GARIS-II.

Data obtained by ⁵¹V+¹³⁹La reaction

Beam energy: 242.6 MeV (center of target)

RRC+GARIS-II

⁵¹V(²⁰⁸Pb,xn)^{259-xn}Db

Beam energy: 242.6 MeV (center of target)

Observed cross section was confirmed in the order of magnitude with Ref.1. The position distribution in the focal plane detector was proper. (Bp setting OK!) **Overall system performance was confirmed!**

Ref.1: Phys. Rev. C 78, 034604(2008) J. Gates et al.,

Strategy of new element search at RIKEN

Past RILAC + GARIS-I or GARIS-II (until end of June 2017)

- $^{\cdot 248}$ Cm + 48 Ca \rightarrow Lv(116) \rightarrow Succeeded!
- · Study for barrier distributions of 248 Cm + 22 Ne, 23 Na, 30 Si, 34 S, 40 Ar, 50 Ti, 51 V
- · ²⁴⁸Cm + ⁵⁰Ti \rightarrow Og(118) pilot reaction (study for post ⁴⁸Ca) \rightarrow interrupted by upgrading
- RILAC-II + RRC + GARIS-II (started in Dec. 2017)
- ²⁴⁸Cm + ⁵¹V \rightarrow **119** \rightarrow **Running!**
- 248 Cm + 54 Cr \rightarrow **120** (after the 119)

New RILAC + GARIS-III (will be started early in 2020)

- ²⁴⁸Cm + ⁵¹V → **119**
- ${}^{248}Cm + {}^{54}Cr \rightarrow 120$ (after the 119)

⁵¹V(²⁴⁸Cm,xn)^{299-xn}119

119th element search was started from Jan. 2018.

Irradiation energy , beam intensity, accumulated dose and details of target are confidential matter of new SHE corroboration group.
I could not present the detail of this time. Sorry.

Experiment is continued intermittently.

This year, we already run Jan. 7th to Mar.7th. Next beam time is scheduled from Apr. 21st.

Prospected decay chains of V + Cm

Summary of status at RIKEN

- RILAC-II + RRC + GARIS-II started new element search from Jan. 2018
- New RILAC + GARIS-III now preparing it will be ready early in 2020

When both setup will be ready, we can perform new element search in parallel.

Thank you for your attention!