

Experimental Research on the Reactions and Decays of Exotic Nuclei

ChengJian Lin

Nuclear Reaction Group, China Institute of Atomic Energy

54th ASRC International Workshop Sakura-2019 "Nuclear Fission and Structure of Exotic Nuclei" Japan Atomic Energy Agency, Tokai, Japan, 25-27 March 2019

Research Activities in NRG

Distance to center of nucleus

2019/5/2

- **1. Potentials of exotic nuclear systems**
- 2. Reactions with weakly-bound nuclei
- 3. 2p emissions from excited states
- 4. Decays of extremely *p*-rich nuclei

▲ Optical Model is a successful model to explain the nuclear scattering and reaction, which resembles the case of light scattered by an opaque glass sphere.

Optical Model Potential (OMP):

U = V(r) + iW(r)attractive absorptive

★ phenomenological potential, independent on energy.

▲ A basic task in nuclear reaction study is to understand the nuclear interaction potential.

Cf: 1) S. Fernbach, R. Serber, and T. B. Taylor, Phys. Rev. **73**, 1352 (1949). 2) H. Feshbach, "The optical model and its justification", Ann. Rev. Nucl. Sci. **8**, 49 (1958).

Threshold Anomaly (TA)

$$\Delta V(r;E) = \frac{P}{\pi} \int_0^\infty \frac{W(r;E')}{E'-E} dE'$$

Dispersion relation (results from the causality)

Cf: 1) M. A. Nagarajan, C. C. Mahaux, and G. R. Satchler, Phys. Rev. Lett. **54**, 1136 (1985). 2) C. Mahaux, H. Ngo, and G. R. Satchler, Nucl. Phys. **A449**, 354 (1986).

3) G. R. Satchler, Phys. Rep. 199, 147 (1991).

Abnormal TA: weakly-bound nuclei

- ▲ Exotic nuclei: weakly-bound & having specified structures (cluster, halo/skin)
- ▲ Reactions: easily breakup, strongly coupling to continuum, complex mechanisms

OMPs are usually extracted from the elastic scattering.

★ Rather difficult to extract an effective OMP at low energies.

Cf: 1) E.F. Aguilera *et al.*, PRL **84**, 5058 (2000); PRC **63**, 061603R (2001). 2) A. R. Garcia *et al.*, Phys. Rev. C **76**, 067603 (2007).

Transfer Method

⁶³Cu(⁷Li, <u>⁶He</u>)⁶⁴Zn: Phys. Rev. C **95**, 034616 (2017).

Experiments: ²⁰⁸Pb(⁷Li,⁶He)²⁰⁹Bi

Two experiments have been done at HI-13 tandem accelerator @ CIAE Exp1: $E_{\text{beam}} = 42.55$, 37.55, 32.55, 28.55, 25.67 MeV – high energies [2004.8] Exp2: $E_{\text{beam}} = 28.55$, 25.67, 24.3, 21.2 MeV – low energies [2016.4] * Angular distributions of both elastic scattering and transfer were measured.

Results: OMPs of ⁶He+²⁰⁹Bi

- ★ OMPs of the ⁶He+²⁰⁹Bi system are determined precisely for the first time;
- ★ The decreasing trend in the imaginary part is observed, and the threshold energy is about 13.73 MeV (~0.68V_B);
- ★ The behavior of real part looks normal, i.e. like a bell shape around the barrier;
- ★ The dispersion relation does
 NOT hold in this system.

L. Yang, C.J. Lin*, H.M. Jia et al., Phys. Rev. Lett. **119**, 042503 (2017); Phys. Rev. C **96**, 044615 (2017).

Discussions

- **★** Dispersion relation results from causality, connecting real and imaginary part;
- * Any wave/particle should follow this relation when it passes through a media;
- **★** The dispersion relation is **not** applicable for exotic nuclear systems.

Possible reasons:

- Causality → dispersion relation stable systems: causality ↔ analyticity
- Cauchy integration infinity poles (breakup) & off-axis (multi-process)
- Negative Index of Refraction causality based criteria must be used with care [Phys. Rev. Lett. 101, 167401 (2008).]
- Locality vs. non-locality equivalent local potential in Schrödinger equation

2019/5/2

1. Potentials of exotic nuclear systems

- 2. Reactions with weakly-bound nuclei
- 3. 2p emissions from excited states
- 4. Decays of extremely *p*-rich nuclei

Reactions with Exotic Nuclei

RIBs experiments

Elastic scattering
 3-body, 4-body
 CDCC ...

Fusion/Reaction
TF = ICF + CF ...

Breakup/transfer
Effects & mechanisms

[1] L. F. Canto, P. R. S. Gomes, R. Donangelo et al., Phys. Rep. 424, 1 (2006).
[2] L. F. Canto, P. R. S. Gomes, R. Donangelo et al., Phys. Rep. 596, 1 (2015).
[3] B. B. Back, H. Esbensen, C. L. Jiang and K. E. Rehm, Rev. Mod. Phys. 86, 317 (2014).

Reaction mechanism

★ How to identify the different reaction process?

Experiments

★ Complete-kinematics measurement ; **★** Reactions induced by ⁷Be, ⁸B, ¹⁷F ...

2019/5/2

Preliminary Results: 17F+58Ni

Preliminary Results: ¹⁷F+⁵⁸Ni

[Cf. Lei Jin & A. M. Moro, PRL 122, 042503 (2019)]

Preliminary conclusions:

- The non-elastic breakups are dominant;
- Fusions are suppressed at energies above the barrier but enhanced below the barrier.

Discussions

★ Exclusive breakup (¹⁶O-*p*)

Our result: **σ ~ 1.2 mb** @ **63 MeV**;

Liang's result: $\sigma \sim 15.6 \text{ mb} @ 170 \text{ MeV}$.

[J.F. Liang et al., PLB 681, 22 (2009).]

Why are the breakup cross sections so low?

- Screen effects due to the dynamic polarization?
- Transfers are dominant?
- ...

⁸B+¹²⁰Sn experiment will be performed at CNS/RIKEN (2 -16 Apr., 2019)

¹⁷F ($S_p = 0.601$ MeV), ⁸B ($S_p = 0.136$ MeV)

- **1. Potentials of exotic nuclear systems**
- 2. Reactions with weakly-bound nuclei
- 3. 2p emissions from excited states
- 4. Decays of extremely *p*-rich nuclei

Exotic decays of *p*-rich nuclei

 βp , $\beta 2 p$, $\beta 3 p$, $\beta p \gamma$, $\beta \gamma p$, $\beta \alpha$, $\beta 2 \alpha$, $\beta \alpha p$, $\beta p \alpha$, $\beta p 2 \alpha$, βn , $\beta 2 n$, $\beta 3 n$, βd , βt , βF ...

- Structures of *p*-rich nuclei close to/beyond the drip-line
- Effective interaction pairing, isospin non-conserving (INC), three-body force
- Initial state interaction (ISI), final state interaction (FSI), quantum entanglement
- Nuclear astrophysics (p, γ) , $(2p, \gamma)$, (α, γ) ... processes

Overview of our research

													⁴⁰ Sc	⁴¹ Sc
		Sta	ble	Nuc	lide			20	³⁵ Ca	³⁶ Ca	³⁷ Ca	³⁸ Ca	³⁹ Ca	⁴⁰ Ca
		Implantation								³⁵ K	³⁶ K	³⁷ K	³⁸ K	³⁹ K
		In-flight				18	³¹ Ar	³² Ar	³³ Ar	³⁴ Ar	³⁵ Ar	³⁶ Ar	³⁷ Ar	³⁸ Ar
								³¹ Cl	³² CI	³³ CI	³⁴ CI	³⁵ CI	³⁶ CI	³⁷ Cl
				16	²⁷ S	²⁸ S	²⁹ S	³⁰ S	³¹ S	³² S	³³ S	³⁴ S	³⁵ S	³⁶ S
	²⁶ P ²⁷ P ²⁸ P						²⁸ P	²⁹ P	³⁰ P	³¹ P	³² P	³³ P	³⁴ P	³⁵ P
	14	²² Si	²³ Si	²⁴ Si	²⁵ Si	²⁶ Si	²⁷ Si	²⁸ Si	²⁹ Si	³⁰ Si	³¹ Si	³² Si	³³ Si	³⁴ Si
	•		²² AI	²³ AI	²⁴ AI	²⁵ AI	²⁶ AI	²⁷ AI	²⁸ AI	²⁹ AI	³⁰ AI	³¹ AI	³² AI	³³ AI
	12	²⁰ Mg	²¹ Mg	²² Mg	²³ Mg	²⁴ Mg	²⁵ Mg	²⁶ Mg	²⁷ Mg	²⁸ Mg	²⁹ Mg	³⁰ Mg	³¹ Mg	³² Mg
	•		²⁰ Na	²¹ Na	²² Na	²³ Na	²⁴ Na	²⁵ Na	²⁶ Na	²⁷ Na	²⁸ Na	²⁹ Na	³⁰ Na	³¹ Na
10	¹⁷ Ne	¹⁸ Ne	¹⁹ Ne	²⁰ Ne	²¹ Ne	²² Ne	²³ Ne	²⁴ Ne	²⁵ Ne	²⁶ Ne	²⁷ Ne	²⁸ Ne	²⁹ Ne	³⁰ Ne
		¹⁷ F	¹⁸ F	¹⁹ F	²⁰ F	²¹ F	²² F	²³ F	²⁴ F	²⁵ F	²⁶ F	²⁷ F		²⁹ F

- Started from 2004
- ♣ RIBLL@HIRFL (Lanzhou)

♠ In-flight decay

(Ex. states 2p emissions) ^{28,29}S/^{27,28}P;

^{17,18}Ne.

- ♠ Implantation decay
 - (G.S. βp, β2p...) ^{36,37}Ca; ²⁷S/²⁶P/²⁵Si; ²²Si/²⁰Mg; ²³Si/²²Al/²¹Mg; ²⁴Si/²³Al.

In-flight decays

2*p* emissions from high-lying excited states and related topics

2019/5/2

Exp. setup 1

RIBLL Experimental Setup 2007

Covered ±10° 255mm

Note:

Collimators: PPAC1: φ30 mm; PPAC2: φ20 mm. ΔE: 300μm Si ΔE detector, combined with TOF (I ¹⁹⁷Au: target, 200-250 μm, φ28 mm. D1,D2,D3: 300μm Si, 48mm×48mm. D4: 1000μm Si detector with 4 segments, 50mm× X1,Y1,X2,Y2: 300μm Si strip detectors, each of 2 CSI: CSI(TI)+PIN detectors, 20 mm length, total C

Complete-kinematics measurements

2019/5/2

Exp. setup 2

SSSD3,4

р

Secondary target: ¹⁹⁷Au, 100 µm SD: Silicon detectors, 325, 1000 µm

SSSD: Single sided Silicon Strip Detec with 2 mm in the width and 0.1 the construction of the particle tr CsI(Tl) array: 6×6 lattices, each 15 through **PIN** photodiode. *Complete-kinematics* measurements

2p-decay modes

2019/5/2

Sakura2019@JAEA

2*p* emission: ²⁹S/ ²⁸P

Diproton emissions were observed in ²⁹S but not in ²⁸P.

²⁹S: C.J. Lin, X. X. Xu, H. M. Jia *et al.*, PRC **80**, 014310 (2009);
²⁸P: X. X. Xu, C.J. Lin, H.M. Jia *et al.*, PRC **81**, 054317 (2010).

2*p* emission: ²⁸S/²⁷P

\star Diproton emission is enhanced by 2*p* halo-like states.

X.X. Xu, C.J. Lin* et al., Phys. Lett. B 727, 126 (2013).

2019/5/2

2p emission & 2p halo

2p halo/skin in proton-rich S isotopes

2019/5/2

BCS/BEC crossover: 17,18 Ne

C.J. Lin*, X.X. Xu, H.M. Jia et al., JPS Conf. Proc. 1, 013026 (2014).

Discussions

Question: How to describe *2p* **emission in precise?**

- **1. Potentials of exotic nuclear systems**
- 2. Reactions with weakly-bound nuclei
- 3. 2p emissions from excited states
- 4. Decays of extremely *p*-rich nuclei

Implantation decays

 β -decay spectroscopy of nuclei close to the proton drip line

2019/5/2

Exp. setup1

A detector array for 2*p*-decay study by **implantation** method for lifetime > 10 μs

1p efficiency: 66%; 2p efficiency: 20%

Exp. setup2

2p efficiency: 20%

2019/5/2

Results 1: ²²Si/²⁰Mg

Primary beam: ²⁸Si, 75.3 MeV/u @ 40 enA. ³⁵Ca ³⁶Ca βp precursors 10⁴ 35K ²²Si: 4×10⁻³ pps @ 8×10⁻⁴% 3000 33 Ar ³⁴Ar 32 A/ ²⁰Mg: 0.72 pps @ 0.15% 33CI 31 CI 32CI 2500 10³ N=827S ³¹S ³²S 28S 29S 30S ¹⁸Ne 26p 28p 29p ³⁰P ³¹P 27P 2000 17 F DE1 23Si 27Si $T_{z} = -3$ 24Si 25Si ²⁶Si ²⁸Si 29Si ³⁰Si 22Si 10² 16**0** 1500 23 AI 22AI 24 AI 25AI ²⁶AI 27AI 14**6** $T_z = -2$ ²⁴Mg ²¹Mg ²²Mg ²³Mg ²⁴Mg ²⁵Mg ²⁶Mg 1000 10 ²⁰Na ²¹Na ²²Na ²³Na ¹⁸Ne ¹⁹Ne ²⁰Ne ²¹Ne ²²Ne Ne 500 Atta Darieta de Constante -300 -250 -200 -700 -650 -600-550 -500-450 -400 -350 T1-T2

PID of the secondary beam

2019/5/2

2019/5/2

Doolz	Energy	BR	Decay		
ГСак	(keV)	(%)	Mode		
1	230(50)	2.9(10)	2p ?		
2	680(50)	6.8(14)	βp		
3	1710(50)	1.9(7)	βp		
4	1950(50)	52.0(74)	βp		
5	2110(50)	10.9(21)	βp		
6	2180(50)	6.5(15)	βp		
7	2330(50)	5.1(13)	βp		
8	3550(50)	2.5(9)	βp		
9	5600(70)	0.7(3)	<i>β</i> 2 <i>p</i>		

★ Mass of ²²Si

• $\Delta(^{22}\text{Si}) = \Delta(^{22}\text{Al IAS}) + \Delta E_{\text{C}} - \Delta_{n\text{H}}$ $\rightarrow S_{2p} = -108 \pm 125 \text{ keV};$ • $\Delta(^{22}\text{Si}) = \Delta(^{22}\text{O}) - 2b(A,T)T_{\text{Z}}$ $\rightarrow S_{2p} = -15 \text{ keV}$

The first experimental mass data. The first $\beta 2p$ precursor found in Asian Lab.

2019/5/2

Discussions on ²²Si/²⁰Mg

Solution Mirror asymmetry \rightarrow INC interaction asymmetry parameter: $\delta = \frac{ft^+}{ft^-} - 1$

20	⁰ Mg→ ²⁰ Na				$^{20}O \rightarrow ^{20}F$		
²⁰ Na E^* (keV)	br (%)	log ft	J^{π}	20 F E^* (keV)	br (%)	log ft	δ
983.9(22)	66.9(46)	3.80(4)	1+	1056.848(4)	99.973(3)	3.740(6)	0.148(107)
2998(13)	8.6(7)	4.15(4)	1+	3488.54(10)	0.027(3)	3.65(6)	2.16(53)
	²² Si→ ²² Al				$^{22}O \rightarrow ^{22}F$		
22 Al E^* (keV)	br (%)	log ft	J^{π}	22 F E^* (keV)	br (%)	log ft	δ
1170(50)	5.1(3)	5.10(5)	1+	1625	29(4)	4.6(1)	2.16(82)
2400(50)	60.6(65)	3.79(7)	1+	2572	68(6)	3.8(1)	-0.02(28)

Three-Body Force PRL110,022502(2013).

		S_p		S_{2p}			
Nucleus	Expt.	NI	V + 3N	Expt. N		N + 3N	
N = 8	[IMME]	sd	$sdf_{7/2}p_{3/2}$	[IMME]	sd	$sdf_{7/2}p_{3/2}$	
¹⁸ Ne	3.92	4.05	3.76	4.52	4.67	4.17	
¹⁹ Na	-0.32	-0.32	-0.26	3.60	3.73	3.50	
20 Mg	2.66	2.83	2.98	2.34	2.51	2.72	
^{21}Al	[-1.34]	-2.52	-1.83	[1.45]	0.30	1.15	
²² Si	[1.35]	0.90	1.71	[0.01]	-1.63	-0.12	

2019/5/2

Results 2: ²⁷S

2019/5/2

Daughter: ²⁷P

 $\beta p \& \beta \gamma$ were measured simultaneously for the first time.

2019/5/2

The Galactic ²⁶Al puzzle

2019/5/2

Thermonuclear ²⁶Si(*p*,γ)²⁷P Rate

Comparison of the calculated thermonuclear reaction rates from the $3/2^+$ resonance contribution.

L.J. Sun *et al.*, arXiv:1809.02980v1; arXiv:1809.02987v1.

2019/5/2

Collaborators

Thanks to all the collaborators

Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China
 Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
 School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
 Department of Physics, The University of Hong Kong, Hong Kong, China
 College of Physics and Technology, Guangxi Normal University, Guilin 541004, China
 State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing 100871, China
 Department of Physics, Beihang University, Beijing 100191, China
 School of Physical Science and Technology, Southwest University, Chongqing 400044, China
 Fundamental Science on Nuclear Safety and Simulation Technology Laboratory,
 Harbin Engineering University, Harbin 150001, China
 School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China
 School of Physics and Nuclear Energy Engineering, Beihang University, Beijing 100191, China

14 Dipartimento di Fisica, Universita di Padova, via F. Marzolo 8, I-35131 Padova, Italy 15 Istituto Nazionale di Fisica Nucleare-Sezione di Padova, via F. Marzolo 8, I-35131 Padova, Italy 16 Department of Physics, Sungkyunkwan University, Jongno-gu 25-2, Sungkyunkwan-ro 110745, Seoul 17 Department of Physics, University of Napoli "Federico II", Via Cintia, I-80126 Napoli, Italy 18 University of Catania, Sicily, Italy

••• •••

Thank you for your attention.

