Precision Mass Measurements of Superheavy Nuclei with MRTOF and its application at JAEA

Yuta Ito^{1,2}

P. Schury^{2,3}, M. Wada^{2,3}, F. Arai^{2,4}, H. Haba², Y. Hirayama³, S. Ishizawa^{2,5}, D. Kaji², S. Kimura², H. Koura¹, M. MacCormick⁶, H. Miyatake³, J.Y. Moon^{3,7}, K. Morimoto², K. Morita^{2,8}, M. Mukai⁴, I. Murray^{2,6}, T. Niwase^{2,8}, K. Okada⁹, A. Ozawa⁴, M. Rosenbusch², A. Takamine², T. Tanaka^{2,8}, Y.X. Watanabe³, H. Wollnik^{2,10}, and S. Yamaki^{2,11}

¹JAEA, ²RIKEN, ³KEK, ⁴Univ. Tsukuba, ⁵Yamagata Univ., ⁶IN2P3-CNRS, ⁷IBS, ⁸Kyushu Univ., ⁹Sophia Univ., ¹⁰NMSU, ¹¹Saitama Univ.

Cryo. Gas Catcher

RF Carpet

SPIG

Flat Trap

MRTOF

Shell Effect and Island of Stability in SHE

- really exist?
- where and how stable?
- how to synthesize?
- how to identify?

- understand nuclear structure of SHE
- $\hfill\square$ inspect and establish reliable mass models
- new identification technique

via high-precision mass spectroscopy with an MRTOF

Nuclei Measured/Identified with MRTOF @RIKEN

- fusion-evaporation and in-gas-cell decay products (⁴⁸Ca + ²⁰⁸Pb/^{nat}Tl/¹⁶⁹Tm/¹⁶⁵Ho, ¹⁸O/¹⁹F + ²³²Th/^{nat}U):
 55 nuclides
- multi-nucleon transfer products and target recoils (¹⁸O/¹⁹F + ²⁰⁸Pb/²³²Th/^{nat}U/): 16 nuclides
- masses of >30 nuclides were directly measured for the first time
- all nuclei observed were mostly q = 2+ at cryogenic condition: cleanness in GC and IP2(X) < IP1(He)

SHE-Mass Setup @GARIS-II

SHE-Mass Setup @GARIS-II

Concomitant Referencing Method

Multi-Steps Confirmation for Rare Events

nature of MRTOF

only TOF for identification (no decay info.)
 "spectrograph-like" nature, conversely, all ions are recorded in a spectrum

possible contaminations

isobaric ions: same number of laps
 non-isobaric ions (target recoils, other reaction channels, molecular ions, ...)

: different number of laps

detector background: random

- 3-steps confirmation/identification
 - 1. TOF expected @N laps

2. TOF expected @N' laps (typ. $N\pm1$) with similar rate

3. dummy (lighter) target run

: Au (Z = 79) target instead of Tl (Z = 81) target \rightarrow no chance to produce ion of interest, while other conditions should be similar

FIG. 4. TOF spectra in the anticipated vicinity of ${}^{250}Md^{2+}$ at n = 144 and 145 laps for ${}^{nat}Tl$ and ${}^{197}Au$ targets.

Mass Determinations

Isotope	Reaction	E _{lab} (MeV)	E _{recoil} (MeV)	$\sigma_{\rm ER}$ (nb)	$ ho^2$	$\frac{\text{ME}_{\text{MRTOF}}}{(\text{keV}/c^2)}$	$\frac{\text{ME}_{\text{AME16}}}{(\text{keV}/c^2)}$	Δm (keV/ c^2)	$N_{\rm ion}$ (counts)
²⁴⁶ Es	232 Th(19 F, 5 <i>n</i>)	99.6, 103	7.5, 7.8	(800) [29]	0.925 743 51(44)	67 812(109)(32)	67 900#(224#)	-88(109)(32)	33
²⁵¹ Fm	238 U(18 O, 5 <i>n</i>)	93.9	6.9	4000 [30]	0.944 587 00(14)	75 996(34)(25)	75 954(15)	42(34)(25)	397
²⁴⁹ Md	203 Tl(48 Ca, $2n$)	215	41.1	(40) [29]	0.937 067 92(89)	77 259(221)(26)	77 232#(205#)	27(221)(26)	14
²⁵⁰ Md	205 Tl(48 Ca, $3n$)	223	42.3	(200) [29]	0.940 834 91(56)	78 472(138)(25)	$78630^{\#}(298^{\#})$	-158(138)(25)	29
²⁵¹ Md	205 Tl(48 Ca, $2n$)	215	40.8	760 [31]	0.944 599 23(24)	79 025(60)(23)	78 967(19)	58(60)(23)	173
²⁵² Md	238 U(19 F, 5 <i>n</i>)	98.6	7.3	(500) [29]	0.948 367 15(36)	80 467(89)(22)	80 511#(130#)	-44(89)(22)	63
²⁵⁴ <i>g</i> No	208 Pb(48 Ca, $2n$)	219	41.1	2000 [32]	0.955 908 32(17)	84 675(42)(19)	84 723.4(9.3)	-48(42)(19)	398

good agreement with AME16: extrapolation in this region is still quite valid

Nuclear Structure at N = 152 and Mass Predictions

Mass Measurement Plan for MNT Products @JAEA

MNT Spectra with ^{nat}U + ¹⁸O @GARIS-II

P. Schury, to be published

Summary

- Systematic mass information is indispensable to understand nuclear structure and to inspect nuclear mass models for exploring "Island of Stability"
- SHE-mass setup offers fast, efficient, and wide-band high-precision mass measurements
- Concomitant referencing enables drift correction and low count rate measurement
- Masses of ^{249,250,252}Md and ²⁴⁶Es were newly measured in this work and extended mass determination up to ²⁶⁶Mt
- WS4^{RBF} has relatively good prediction power even for heavier nuclei
- Macro-micro models, FRDM12 and WS4^{RBF}, reproduce the trend of δ_{2n} @*N* = 152 well

