Present and future investigations using the surrogate-reaction method

A. Henriques¹, B. Jurado¹, D. Denis-Petit^{1,2}, M. Grieser³, J.C. Thomas⁴, T. Chiron¹, L. Gaudefroy², J. Glorius⁵, C. Langer⁶, Y. A. Litvinov⁵, L. Mathieu¹, V. Méot², R. Pérez-Sànchez¹, J. Pibernat¹, R. Reifarth⁶, O. Roig², U. Spillmann⁵, B. A. Thomas¹, I. Tsekhanovich¹

¹ CENBG, Bordeaux, France
² CEA/DAM-DIF, Arpajon, France
³ MPIK, Heidelberg, Germany
⁴ GANIL, Caen, France
⁵ GSI, Darmstadt, Germany
⁶ Frankfurt University, Frankfurt, Germany

Sakura-2019 Workshop

Motivation

The study of neutron-induced fission and capture cross sections of **short-lived nuclei** is very important to many domains

• Nuclear astrophysics

understanding the origin of the elements

• Reactor physics

development of more efficient reactors

Medical applications

Often cross sections are very difficult or even impossible to measure due to the high radioactivity of the targets involved!

Surrogate Reaction Method

Production of the ion of interest through an alternative reaction to overcome the difficulties to **produce and manipulate** radioactive isotopes

Surrogate Reaction Method - Validity

Neutron-induced and surrogate reaction must lead to the formation of a compound

$$\sigma_{n,decay}^{A}(E^{*}) = \sigma_{CN}^{A+1}(E^{*}) \cdot P_{decay}^{surro}(E^{*})$$

The decay only depends on E^* , J and π !

In addition,
$$P_{decay}^{surro}(E^*) = P_{decay}^n(E^*)$$

At a limit:

- The populated J and π distributions are equal
- The decay is independent of J and π (Weisskopf-Ewing limit valid at high E*)

Validity determined a posteriori

Data obtained with the surrogate method need to be compared to neutroninduced data

Surrogate Reaction Method - Experiment

Simultaneous measurement of fission and y-decay probabilities

Surrogate Reaction Method - Results

Comparison to neutron-induced calculations

 $^{3}\text{He} + ^{238}\text{U} \rightarrow ^{4}\text{He} + ^{237}\text{U}^{*} \Leftrightarrow n + ^{236}\text{U}$

P. Marini et al., to be published

Surrogate Reaction Method

Surrogate Reactions can be use to tune parameters in theoretical models

Step 1: Calculate spin-parity distributions

Step 2: Match the experimental surrogate decay probability by tuning the parameters of the statistical model

Step 3: Predict the desired neutron cross-sections

$$P_{surro,decay}(E^*) = \sum_{J^{\pi}} P_{surro}^{form}(E^*, J^{\pi}) \cdot P_{decay}(E^*, J^{\pi})$$

Technical limitations of Direct Kinematics

- Unavailability of targets from short-lived nuclei
- High background from target contaminants
- P_{v} : low detection efficiency; discrimination of gammas from fission fragments
- P_n : measurement of low-energy neutrons and neutron efficiency

Inverse kinematics

Access to very short-lived nuclei Detection of heavy residues Energy resolution – 100 keV **Storage Rings** No target contaminants

Surrogate Reactions at Heavy-ion Storage Rings

 Pure, ultrathin gas target without contaninants
Excelent beam energy resolution due to e⁻ cooling
Excelent spacial resolution

 ϵ_{beam} up to 0.05 mm·mrad

CRYRING @ GSI

Extreme High Vacuum XHV-10⁻¹¹->10⁻¹² mbar

Surrogate Reactions at Heavy-ion Storage Rings

Surrogate Reactions at Storage Rings

Solar Cells -> Heavy ion detectors @ Storage Rings

- Low cost
- Very robust
- Flexible geometry
- Operates without bias voltage
- High radiation damage resistance
- High capacitance \approx 38 nF/cm²

NUCLEAR INSTRUMENTS AND METHODS 164 (1979) 437-438, © NORTH-HOLLAND PUBLISHING CO

PHOTOVOLTAIC CELLS AS FISSION PRODUCT DETECTORS

GUNTER SIEGERT*

Institut Laue Langevin, Grenoble, France

- Study XHV compability

-Outgasing rate < 5.10⁻¹¹mbar.l/(s.cm²)

- Develop specific pre-amplifiers
- Irratiation of cells

-Heavy ions above 1 A MeV

Experiment @ GANIL, France ⁸⁴Kr, ¹²⁹Xe beams @ 2 to 15 A MeV

5x5 mm² cell at ¹²⁹Xe at 10 MeV/u

Energy resolution: 2-3 % Time resolution: 4 ns

So far, suitable for SR experiments

Conclusions and Outlook

- Surrogate method as a promising method to infer neutron-induced cross sections
- An experimental setup was developed at CENBG to measure simultaneously the gamma emission and fission probabilities
 - Studies in direct kinematics have opened many questions regarding its direct comparison to neutron induced reactions
 - Surrogate reactions can be very useful to constrain model parameters
- Moving to inverse kinematics at storage rings will enable to measure simultaneously the gamma, neutron-emission and fission probabilities with high quality data
 - We are developing a setup to be used at the **CRYRING@GSI**
 - Some preliminary studies of the ²³⁸U(d,d') reaction have indicated efficiencies close to 100%, E* resolution of 300 keV
- Solar cells are foreseen to work as heavy ion detectors and we have conducted a series of sucessful exploratory tests to evalue their compability with the future measurements and the storage ring environment.

Thank you!