Quasi-fission as a Source for New Exotic Nuclei?

Sophia Heinz

GSI Helmholtz Centre for Heavy Ion Research, Germany,

Justus-Liebig-University Giessen & Philipps-University Marburg

Workshop on Nuclear Fission and Structure of Exotic Nuclei JAEA, Tokai, Japan, March 25 - 27, 2019

The present Chart of Nuclides

Nucleosynthesis in the Lab

How can we fill the empty areas?

Proceeding of Low-energy Heavy Ion Reactions

Fragmentation or transfer – what is better?

Theoretical predictions for transfer products along N = 126, Z < 82

dinuclear system (DNS) model, diabatic internuclear potentials

Myeong-Hwan Mun, G.G. Adamian, N.V. Antonenko et al., PRC 89, 034622 (2014).

Langevin type equations of motion, adiabatic internuclear potentials

V. Zagrebaev, W. Greiner, PRL 101, 122701 (2008).

Neutron-rich N = 126 Nuclei

Experimental results: state-of-the-art

⁶⁴Ni + ²⁰⁸Pb: Legnaro; W. Krolas et al., NPA A 724, 289 (2003)
⁶⁴Ni + ²⁰⁷Pb: velocity filter SHIP, GSI; O. Beliuskina et al., EPJ A 50, 161 (2014)
¹³⁶Xe + ²⁰⁸Pb, ¹⁹⁶Pt: J.S. Barrett et al., PRC 91, 064615 (2015)

- \rightarrow isotope ID via gamma decays
- \rightarrow cross-section limits: µb
- \rightarrow no new isotopes discovered in those experiments

Neutron-rich N = 126 Nuclei

Measured transfer and fragmentation cross-sections

Pt isotopes (representative example);

for n-rich nuclei: $\sigma_{\text{Transfer}} \geq \sigma_{\text{Fragmentation}}$

And what's about yields?

Experimental conditions in transfer and fragmentation

	Transfer	Fragmentation
N _{beam}	~ 5 · 10 ¹² / s	~ 10 ¹⁰ / s
d _{Target}	500 µg / cm²	5 g / cm ²
efficiency	<< 100 %	(50 – 100) %
Emission angle	~50° (Coulomb barrier)	few degree (relativistic energies)
Isotope ID	(α, β decays)	(Ε, ΔΕ, ΤΟϜ, Βρ
c v F	nly applicable for nuclei /ith appropriate decay roperties	applicable for all nuclei

\rightarrow more favourable in fragmentation reactions

Transfer and fragmentation yields

yield_{Fragmentation} >> yield_{Transfer}

Transuranium and Superheavy Nuclei

- adiabatic internuclear potentials (V. Zagrebaev, W. Greiner et al.)
- New n-rich superheavy isotopes up to Z ~ 105 are experimentally feasible

diabatic internuclear potentials

 the expected "island of stability" at Z=114, 120 or 126, N=184, is too far above this range

Early studies of transuranium nuclei in MNT reactions

- years 1975 1995, LBL and GSI
- radiochemical methods for isotope separation and ID
- limit values:
 σ ~ 20 nb; T_{1/2} > 30 min.
- observation:
 - MNT products with $Z \leq 101$
 - no new nuclides observed

Our New Approach: a Velocity Filter for Separation

Transfer Reactions in ⁴⁸Ca + ²⁴⁸Cm at SHIP

- Identification of ~100 transfer products up to Z = 102
- Observation of 5 <u>new neutron-deficient</u> isotopes with $Z \ge 92$

H.M. Devaraja et al., PLB 748, 199 (2015). H.M. Devaraja et al., EPJ A 55, 25 (2019).

N-deficient Transuranium Nuclei: Transfer vs. Fusion

Yield of uranium isotopes from transfer and fusion reactions

- for very n-deficient isotopes with $Z \approx 92$ and above: $\sigma \epsilon_{\text{fusion}} \approx \sigma \epsilon_{\text{transfer}}$
- but MNT reactions enable wide-band population of isotopes

→ MNT reactions might become preferable to populate this region

Summary and Outlook

MNT reactions are intensively discussed as a means to produce new isotopes in the region of neutron-rich superheavy nuclei and in the region Z < 82, N ≈ 126 (r-process nuclei)</p>

► In MNT reactions at the velocity filter SHIP we reached the so far lowest limit cross-sections for MNT products: $\sigma_{1 \text{ event}} \sim 1$ nb and observed several new n-deficient transuranium isotopes

Are MNT reactions suitable / favourable for the production of heavy nuclei?

- Z > 92, N \approx 126 \rightarrow MNT appears favourable for n-deficient transuraniums
- Z < 82, N \approx 126 \rightarrow Fragmentation appears favourable
- n-rich SHN \rightarrow new isotopes up to Z ~ 105 seem feasible