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The r process B2FH, Rev. Mod. Phys. 29, 547 (1957) ; A. Cameron, Report CRL-41 (1957)

r(apid neutron capture) process: τn � τβ−
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How far can the r process proceed? Number of free neutrons that seed
nuclei can capture (neutron-to-seed ratio).
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Fission and r process
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Figure courtesy of K.-L. Kratz and H. Schatz

For large neutron-to-seed ratio
fission is unavoidable

- n-induced fission
- β-delayed fission
- spontaneous fission

I Where does fission occur?
I How much material accumulates in fissioning region?
I What are the fission yields?
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Fission and r process #2

Figure 1. Final abundances of the integrated ejecta around the second and third peak for an NSM Korobkin et al. 2012; Rosswog et al. 2013 at a simulation time

10 s, employing the FRDM mass model combined with four different ssion fragment distribution models see the text . For reasons of clarity the results are
presented in two graphs. The abundances for Th and U are indicated by crosses. In the left-hand panel the lower crosses belong to the Panov et al. 2008 model
dashed line , while the lower crosses in the right-hand panel belong to the ABLA07 distribution model dashed line . The dots represent the solar -process
abundance pattern Sneden et al. 2008

Figure 2. Fission rates at 1 s in s for -delayed and neutron-induced ssion at freeze-out from equilibrium for one representative trajectory
when utilizing the FRDM mass model and Panov et al. 2010 ssion rates. : Corresponding ssion fragment production. The distribution model here is ABLA07.

The Astrophysical Journal, 808:30 13pp , 2015 July 20 Eichler et al.

M. Eichler et al., Astrophys. J. 808, 30 (2015).

• Abundances and kilonova light curves strongly affected by fission rates
and fragments. Eichler+(2015), Goriely (2015), Zhu+(2018), Mumpower+(2018), Wu+(2019). . .

• Few fission data sets are available. . .
• Most of the models are parametrizations/phenomenological → validity far

from stability?
• Long-term goal: compute reaction rates and fission properties from

consistent (EDF) nuclear input.
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1) Compute fission properties and binding energies using EDF.
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2) Calculate stellar reaction rates from Hauser-Feshbach theory.
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3) Obtain r-process abundances using network calculations.
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The fission process
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Energy evolution from the initial
state to the scission point.

SAG+ PRC90 (2014); Sadhukhan+ PRC90 (2014)

Collective inertias

Resistance of the nucleus
against the deformation forces.

Baran+ PRC84 (2011); SAG+ PLB787 (2018)
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The Hartree-Fock-Bogolyubov (HFB) formalism
The ground-state wavefunction is obtained by minimizing the total energy:

δE [|Ψ〉] = 0 ,

where |Ψ〉 is a quasiparticle (β) vacuum:

|Ψ〉 =
∏
µ

βµ|0〉 ⇒ βµ|Ψ〉 = 0 .

The energy landscape is constructed by constraining the deformation of the
nucleus 〈Ψ(q)|Q̂|Ψ(q)〉 = q:

E [|Ψ(q)〉] = 〈Ψ(q)|Ĥ − λqQ̂|Ψ(q)〉 .

The energy density functionals (EDF) provide a phenomenological ansatz of the
effective nucleon-nucleon interaction:

- Barcelona-Catania-Paris-Madrid (BCPM);
- Skyrme and Gogny interactions (UNEDF1, D1S);
- relativistic EDF.
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Fission barriers from EDF’s

The EDF formalism provides neutron separation energies, fission barriers and
collective inertias for reaction rates calculations.
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Above N = 184 the r-process path (Sn = 2 MeV) enters in a region of low
fission barriers ⇒ neutron-induced fission dominates.
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Nuclear inputs from the BCPM EDF
We study the impact of fission in the r process by comparing BCPM with
previous calculations based on Thomas-Fermi (TF) barriers and Finite Range
Droplet Model (FRDM) masses.
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BCPM: Giuliani et al. (2018); TF: Myers and Świaţecky (1999); FRDM: Möller et al. (1995).
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Compound reactions
Reaction rates computed within the Hauser-Feshbach statistical model.

compound
nucleus

target

γ gamma
decay

particle
emission

fission

- Based on the Bohr independence hypothesis: the decay of the compound
nucleus is independent from its formation dynamics.

- BCPM nuclear inputs implemented in TALYS reaction code to compute
n-induced fission and n-capture rates.
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Cross sections from BCPM
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BCPM stellar reaction rates

SAG et al., Rev. Mod. Phys. 91, 011001 (2019).

I Fission dominates above N = 184 → superheavy elements cannot be created?
I Path to stability crosses region of low fission barriers.
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The dynamical ejecta in neutron mergers
Trajectory from 3D relativistic simulations of 1.35 M�-1.35 M� NS mergers.

x [km]

y
 [
k
m

]

30 20 10 0 10 20 30
30

20

10

0

10

20

30

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

x [km]

y
 [
k
m

]

30 20 10 0 10 20 30
30

20

10

0

10

20

30

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

13.0056 ms 13.4824 ms

x [km]

y
 [
k
m

]

13.8024 ms

50 0 50
50

40

30

20

10

0

10

20

30

40

50

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

x [km]

y
 [
k
m

]

15.167 ms

50 0 50
50

40

30

20

10

0

10

20

30

40

50

9

9.5

10

10.5

11

11.5

12

12.5

13

13.5

14

14.5

Bauswein et al., ApJ 773, 78 (2013).

- Large amount of ejecta (0.001-0.01 M�).
- Material extremely neutron rich (Rn/s & 600).
- Role of weak interactions? 13
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r-process abundances: BCPM vs FRDM+TF

I BCPM Giuliani+(2017) vs TF+FRDM Panov+(2010).
I We changed the rates of nuclei with Z ≥ 84.
I Same β-decay rates [Möller et al. PRC67(2003)].

I BCPM shell gap smaller than FRDM at N = 174:

- FRDM-TF peak at A ∼ 257,
- impact on final abundances at A ∼ 110.

I BCPM barriers larger than TF:

- nuclei around A > 280 longer lifetimes,
- accumulation above 2nd peak,
- more free neutrons available at later stages ⇒

impact for kilonova?

I Same 232Th/238U ratio: progenitors of actinides
have Z < 84 ⇒ can initial nuclei with Z ≥ 84
survive to fission?
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Kilonova and nuclear physics: impact on light curves
• Kilonova: EM transient produced by radioactive decay of r-process nuclei.
→ Observable!

• Composition of the ejecta impacts light curve’s shape.

Y. Zhu et al., Astrophys. J. Lett. 863, 2 (2018). M.-R. Wu et al., Phys. Rev. Lett. 122, 062701 (2019).

• At late times decay energy can be dominated by few nuclei:
- Spontaneous fission of 254Cf.
- α decay of Ra and Rn isotopes.
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Ejecta properties: BCPM vs FRDM+TF

The free neutrons produced by fission:
- Destroy progenitors of 254Cf via n-induced fission.
- Remove progenitors of Ra, Rn via neutron captures.
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• BCPM leads to smaller radioactive energy emitted by α and fission.
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Kilonova light curves: BCPM vs FRDM+TF

SAG et al., in preparation
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Accumulation of fissioning nuclei at early stages strongly reduces the ejecta
heating rate at late times!
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Conclusions & Outlook
• GW170817 pushed r-process studies into an exciting era.
• Reliable estimations of nuclear properties are crucial for proper

nucleosynthesis calculations.
• Energy density functionals can be extremely valuable tools:

- HFB + Hauser-Feshbach for reaction cross sections.
- HFB + Langevin for fission yields.

• New set of stellar rates suited for r-process calculations:
- Strong sensitivity to height of fission barriers and neutron separation

energies around A = 257 and A > 280.
- Progenitors of actinides have Z < 84 ⇒ no nuclei with Z ≥ 84 survive

to fission?
- Accumulation of fissioning nuclei at early stages reduces the ejecta

heating rate at late times.
• Future work:

- extend computation of fragments distributions;
- explore different EDF;
- compute β-decay rates.
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Thank you!

19


	Introduction: Nuclear physics and r process
	The r process
	The role of fission

	Fission properties of r-process nuclei
	Fission within EDF
	Systematic of fission barriers

	r-process nucleosynthesis
	Convince you that our calculations are relevant

	Conclusions & Outlook
	Appendix
	Convince you that theoretical nuclear fission is important


