r-process nucleosynthesis: fingerprints from fissioning nuclei

Samuel A. Giuliani

NSCL/FRIB, East Lansing

March 27th, 2019

"Nuclear Fission and Structure of Exotic Nuclei" ASRC International workshop Sakura-2019

Tokai, Japan

Introduction	Fission properties of r-process nuclei	r-process nucleosynthesis	Conclusions & Outlook
0000	0000000	00000	00

The r process

B²FH, Rev. Mod. Phys. 29, 547 (1957) ; A. Cameron, Report CRL-41 (1957)

r(apid neutron capture) process: $au_n \ll au_{eta^-}$

• How far can the *r* process proceed? Number of free neutrons that seed nuclei can capture (neutron-to-seed ratio).

- ► Where does fission occur?
- How much material accumulates in fissioning region?
- What are the fission yields?

00000	Introduction	Fission properties of r-process nuclei
	0000	000000

 $r\operatorname{-process}$ nucleosynthesis $\operatorname{00000}$

Conclusions & Outlook

Fission and *r* process #2

M. Eichler et al., Astrophys. J. 808, 30 (2015).

- Abundances and kilonova light curves strongly affected by fission rates and fragments. Eichler+(2015), Goriely (2015), Zhu+(2018), Mumpower+(2018), Wu+(2019)...
- Few fission data sets are available...
- Most of the models are parametrizations/phenomenological \rightarrow validity far from stability?
- Long-term goal: compute reaction rates and fission properties from consistent (EDF) nuclear input.

Introduction	Fission properties of r-process nuclei	r-process nucleosynthesis	Conclusions & Outlook
0000	000000	00000	00

1) Compute fission properties and binding energies using EDF.

2) Calculate stellar reaction rates from Hauser-Feshbach theory.

3) Obtain *r*-process abundances using network calculations.

Introduction	Fission properties of r-process nuclei
0000	● O OOOOO

r-process nucleosynthesis

Conclusions & Outlook

The fission process

Potential Energy Surface

Energy evolution from the initial state to the scission point.

SAG+ PRC90 (2014); Sadhukhan+ PRC90 (2014)

Collective inertias

Resistance of the nucleus against the deformation forces.

Baran+ PRC84 (2011); SAG+ PLB787 (2018)

Introduction	Fission properties of r-process nuclei	r-process nucleosynthesis	Conclusions & Outlook
0000	000000	00000	00

The Hartree-Fock-Bogolyubov (HFB) formalism

The ground-state wavefunction is obtained by minimizing the total energy:

 $\delta E[|\Psi\rangle] = 0\,,$

where $|\Psi\rangle$ is a quasiparticle (β) vacuum:

$$|\Psi\rangle = \prod_{\mu} \beta_{\mu} |0\rangle \quad \Rightarrow \quad \beta_{\mu} |\Psi\rangle = 0 \,.$$

The energy landscape is constructed by constraining the deformation of the nucleus $\langle \Psi(q) | \hat{Q} | \Psi(q) \rangle = q$:

$$E[|\Psi(q)\rangle] = \langle \Psi(q)|\hat{\mathcal{H}} - \lambda_q \hat{Q}|\Psi(q)\rangle.$$

The energy density functionals (EDF) provide a phenomenological ansatz of the effective nucleon-nucleon interaction:

- Barcelona-Catania-Paris-Madrid (BCPM);
- Skyrme and Gogny interactions (UNEDF1, D1S);
- relativistic EDF.

Introduction	Fission properties of r-process nuclei	r-process nucleosynthesis	Conclusions & Outlook
0000	00000	00000	00

Fission barriers from EDF's

The EDF formalism provides neutron separation energies, fission barriers and collective inertias for reaction rates calculations.

Above N = 184 the *r*-process path ($S_n = 2$ MeV) enters in a region of low fission barriers \Rightarrow neutron-induced fission dominates.

Introduction	Fission properties of r-process nuclei	r-process nu
0000	000000	00000

r-process nucleosynthesis

Conclusions & Outlook

Nuclear inputs from the BCPM EDF

We study the impact of fission in the r process by comparing BCPM with previous calculations based on Thomas-Fermi (TF) barriers and Finite Range Droplet Model (FRDM) masses.

BCPM: Giuliani et al. (2018); TF: Myers and Światecky (1999); FRDM: Möller et al. (1995).

0000 000000 0000 00	Dutlook
0000 00 00000 00000 00	

Compound reactions

Reaction rates computed within the Hauser-Feshbach statistical model.

- Based on the Bohr independence hypothesis: the decay of the compound nucleus is independent from its formation dynamics.
- BCPM nuclear inputs implemented in TALYS reaction code to compute *n*-induced fission and *n*-capture rates.

Introduction	Fission properties of r-process nuclei
0000	0000000

 $r\operatorname{-process}$ nucleosynthesis $\operatorname{00000}$

Conclusions & Outlook

Cross sections from BCPM

Introduction	Fission properties of r-process nuclei	r-process nucleosynthesis	C
0000	000000	00000	0

Conclusions & Outlook

BCPM stellar reaction rates

SAG et al., Rev. Mod. Phys. 91, 011001 (2019).

- Fission dominates above $N = 184 \rightarrow$ superheavy elements cannot be created?
- Path to stability crosses region of low fission barriers.

0000 000000 00000	Introduction	Fission properties of r-process nuclei	r-process nucleosynthesis
	0000	000000	0000

Conclusions & Outlook

The dynamical ejecta in neutron mergers

Trajectory from 3D relativistic simulations of $1.35\,M_\odot\text{--}1.35\,M_\odot$ NS mergers.

Bauswein et al., ApJ 773, 78 (2013).

- Large amount of ejecta ($0.001\text{-}0.01~\mathrm{M}_{\odot}$).
- Material extremely neutron rich ($R_{n/s} \gtrsim 600$).
- Role of weak interactions?

Introduction	Fission properties of r-process nuclei
0000	000000

r-process nucleosynthesis $\odot \bullet \odot \odot \odot$ Conclusions & Outlook

- ► BCPM Giuliani+(2017) vs TF+FRDM Panov+(2010).
- We changed the rates of nuclei with $Z \ge 84$.
- Same β-decay rates [Möller *et al.* PRC67(2003)].

- ► BCPM Giuliani+(2017) vs TF+FRDM Panov+(2010).
- We changed the rates of nuclei with $Z \ge 84$.
- Same β-decay rates [Möller *et al.* PRC67(2003)].
- BCPM shell gap smaller than FRDM at N = 174:
 - FRDM-TF peak at $A\sim 257$,
 - impact on final abundances at $A\sim 110.$

- ► BCPM Giuliani+(2017) vs TF+FRDM Panov+(2010).
- We changed the rates of nuclei with $Z \ge 84$.
- Same β-decay rates [Möller *et al.* PRC67(2003)].
- BCPM shell gap smaller than FRDM at N = 174:
 - FRDM-TF peak at $A\sim 257$,
 - impact on final abundances at $A\sim 110.$
- BCPM barriers larger than TF:
 - nuclei around A > 280 longer lifetimes,
 - accumulation above 2nd peak,
 - more free neutrons available at later stages ⇒ impact for kilonova?

- ► BCPM Giuliani+(2017) vs TF+FRDM Panov+(2010).
- We changed the rates of nuclei with $Z \ge 84$.
- Same β-decay rates [Möller *et al.* PRC67(2003)].
- BCPM shell gap smaller than FRDM at N = 174:
 - FRDM-TF peak at $A\sim 257$,
 - impact on final abundances at $A\sim 110.$
- ► BCPM barriers larger than TF:
 - nuclei around A > 280 longer lifetimes,
 - accumulation above 2nd peak,
 - more free neutrons available at later stages ⇒ impact for kilonova?
- Same ²³²Th/²³⁸U ratio: progenitors of actinides have Z < 84 ⇒ can initial nuclei with Z ≥ 84 survive to fission?

Introduction	Fission properties of r-process nuclei	r-process nucleosynthesis	Conclusions & Outlook
0000	0000000	00000	00

Kilonova and nuclear physics: impact on light curves

- Kilonova: EM transient produced by radioactive decay of *r*-process nuclei.
 → Observable!
- Composition of the ejecta impacts light curve's shape.

- At late times decay energy can be dominated by few nuclei:
 - Spontaneous fission of ²⁵⁴Cf.
 - α decay of Ra and Rn isotopes.

Ejecta properties: BCPM vs FRDM+TF

The free neutrons produced by fission:

- Destroy progenitors of 254 Cf via *n*-induced fission.
- Remove progenitors of Ra, Rn via neutron captures.

• BCPM leads to smaller radioactive energy emitted by α and fission.

 $\substack{r \text{-} \mathsf{process nucleosynthesis}\\ \circ \circ \circ \circ \bullet}$

Conclusions & Outlook

Kilonova light curves: BCPM vs FRDM+TF

SAG et al., in preparation

Accumulation of fissioning nuclei at early stages strongly reduces the ejecta heating rate at late times!

Conclusions & Outlook

- GW170817 pushed *r*-process studies into an exciting era.
- Reliable estimations of nuclear properties are crucial for proper nucleosynthesis calculations.
- Energy density functionals can be extremely valuable tools:
 - HFB + Hauser-Feshbach for reaction cross sections.
 - HFB + Langevin for fission yields.
- New set of stellar rates suited for *r*-process calculations:
 - Strong sensitivity to height of fission barriers and neutron separation energies around A = 257 and A > 280.
 - Progenitors of actinides have Z<84 \Rightarrow no nuclei with $Z\geq 84$ survive to fission?
 - Accumulation of fissioning nuclei at early stages reduces the ejecta heating rate at late times.
- Future work:
 - extend computation of fragments distributions;
 - explore different EDF;
 - compute β -decay rates.

Introduction	Fission properties of r-process nuclei	r-process nucleosynthesis	Conclusions & Outlook
0000	0000000	00000	0•

Cnollaborators

- Z. Matheson and W. Nazarewicz (NSCL/FRIB, East Lansing)
- G. Martínez Pinedo (TUD/GSI, Darmstadt)
- L. M. Robledo (UAM, Madrid)
- J. Sadhukhan (VECC, Kulkata)
- N. Schunck (LLNL, Livermore)
- M.-R. Wu (Sinica, Taiwai)

Thank you!