Superheavy Element Studies at LBNL

Jacklyn M. Gates

Nuclear Science Division Lawrence Berkeley National Laboratory

- Superheavy Elements
- Introduction to FIONA
- Results from FIONA commissioning
- Results from first FIONA scientific campaign

Jacklyn M. Gates

FIONA People

- Ken Gregorich (PI, retired) Jeff Kwarsick (grad student) Michel Kireeff Covo (staff) Rodney Orford (Postdoc) Greg Pang (Project Scientist) Jenn Pore (Postdoc) Guy Savard (ANL)
- Lawrence Berkeley National Laboratory University of California, Berkeley Argonne National Laboratory University of Chicago TRIUMF Lawrence Livermore National Laboratory McGill University

Nick Esker Mejdi Mogannam Jon Batchelder **Darren Bleuel** Rod Clark Heather Crawford Paul Fallon Klaire Hubbard Aaron Hurst Ian Kolaja Augusto Macchiavelli Chris Morse Larry Phair Mark Stoyer

Chart of the Nuclides

Shell effects from Sobiczewski et al: Phys. Rev. C 63 (2001) 034306

Jacklyn M. Gates

Chart of the Nuclides

BERKELEY LAB

Multiprong approach towards investigating SHE

Mass number identifications

- Neutron numbers
- Ambiguities in isotope assignments
- Multiple decay paths

Spectroscopy in low α -, γ - background

- Electron capture decay
- Chemistry

α - γ Spectroscopy

- Nuclear Structure
- Proton numbers
- Shapes

Berkeley Gas-filled Separator (BGS)

Berkeley Gas-filled Separator (BGS)

lons at end of BGS are:

- Separated from the beam and unwanted reaction products
- Traveling at 10-45 MeV
- Beamspot is 2x3 cm FWHM

What we want after that:

 Low energy (5-10 keV), mass-separated isotopes delivered to a low neutron and γ-ray background region on a 10-ms time scale

Jacklyn M. Gates

BGS+FIONA - Overview

Interface between BGS and Mass Analyzer

Jacklyn M. Gates

What we get at the end

Requirements for mass analyzer:

- Mass determination from ≤3 atoms Fit at least 6 masses on detector
- 2. High dispersion
- 3. Masses separated by >4 σ
 - Low extraction voltage from RFQ
 - . High efficiency >50%
 - 6. Fit within existing space

54th ASRC International Workshop Sakura – Mar 25, 2019 11

Jacklyn M. Gates

ExB Mass Analyzer – The Idea

Traditional wien filter:

Perpendicular electric and magnetic fields, balanced such that ions with V=E/B travel straight through separator

Trochoid spectrometer:

Perpendicular electric and magnetic fields that are unbalanced \rightarrow ions take trochoidal trajectories

ExB Mass Analyzer – The Idea

Trochoid spectrometer:

RFQ

Trap 1

Gas

Catcher

Window

BGS

RFQ

Trap 2

Perpendicular electric and magnetic fields that are unbalanced \rightarrow ions take trochoidal trajectories

54th ASRC International Workshop Sakura – Mar 25, 2019 13

Mass

Anal.

Det.

Box

Extr.

Accel.

Mass Analyzer: Simulations w/ SIMION

Simulations of ²⁸⁸115 and ²⁸⁹115

BGS+FIONA - Overview

RF Gas Catcher

stop ions He gas, **RF and DC E-fields** direct ions to an exit orifice

RF Quadrupole Trap

bunch and cool ions, re-accelerate and transfer to mass analyzer

Detector Station

^AZ from α -decay mass from *x*-position lifetime from *y*-position

Cave 1: BGS \rightarrow Gas Catcher \rightarrow RFQ Trap \rightarrow Acceleration Region

Jacklyn M. Gates

Cave 2: Diagnostics \rightarrow Separator \rightarrow Detector

Jacklyn M. Gates

FIONA Commissioning: A/q separation

Experiment:

- At and Po isotopes produced at the 88" Cyclotron using the reaction:
- ^{nat}Tb + ⁴⁸Ca → ¹⁹⁹⁻²⁰¹At, ^{198,199}Po
- Separated by Mass/charge in FIONA

FIONA Calibration and Scaling to a New Mass

- Scale new mass acceleration potential by mass/charge ratio of ion
 - same magnetic rigidity
- 2. Scale all electric elements to account for new electric rigidity
 - new mass should exact same trajectories through FIONA as old mass
 → show up in same position in focal plane detector
- 3. Tested by scaling between ²⁵⁴No²⁺, ²⁵⁵Lr²⁺, ¹⁵¹Ho¹⁺, ²⁰⁰At¹⁺, ²⁰⁸Fr¹⁺, ²¹⁶Po¹⁺, ²⁴⁵Fm¹⁺, ²⁵⁴No¹⁺ and ²⁵⁵Lr¹⁺

What to do for *Proof-of-Principle* Chemistry with FIONA?

We do not have a good way to measure (partial) pressure inside the trap \rightarrow do calibration measurement!

Requirements:

- Well-defined reaction constant
- Fast kinetics
- Easily-made, short-lived, alpha-decaying isotope
- Proceeds at room temperature, in low pressures

Holmium!

- Forms HoO⁺ in the presence of O₂
- Measured reaction rate coefficients:
 - 2.4 x 10⁻¹⁰ (O₂)
 - 1.7 x 10⁻¹¹ (N₂O)

Jacklyn M. Gates

Proof-of-Principle experiment for gas-phase ion chemistry: $Ho + O_2$

- 1) Produced and separated Ho at the 88
- 2) Ho¹⁺ ions were captured and cooled in a RFQ trap containing a small partial pressure of O₂
- 3) Relative amounts of Ho⁺ and HoO⁺ were measured with a mass separator
- Reaction kinetics: change in [Ho+]/[HoO+] with [O₂] was measured, and used to calibrate [O₂]

First Chemistry with FIONA: Reduction of Lr^{2+} by O_2^{-1}

If the electron affinity of M^{2+} is sufficiently greater than the ionization potential of O_2 , reduction of M^{2+} by electron transfer can occur.

 $IP(O_{2+}) = 12.07 \text{ eV}$ EA Lr²⁺ = IP Lr¹⁺ = 14.54 eV Reaction rate is near the O₂ collision rate

Other Results: Reduction of No²⁺ by O₂ not observed (IP No¹⁺ = 12.93) (not "sufficiently greater")

First Scientific Experiments with FIONA

GOAL: Mass Number Measurement of E115

- Produced E115 using the ⁴⁸Ca + ²⁴³Am reaction at the LBNL 88" cyclotron
- First scientific result from FIONA using 30 days of beam time with an average intensity of 1 puA ⁴⁸Ca beam

3n

Guessing E115 Charge State

- Measured 1+/2+ ratio at exit of acceleration region for Fm, No, Lr, At, Po and Fr
- Second IP of E115 estimated to be ~18.3 eV – Table II in Borschevsky et al, Phys. Rev. A 91, 020501(R) (2015)
- Expect most E115 to be extracted as 1+ ions

First direct determination of a SHE mass number

- Observed two alpha decay chains
- One chain beginning with a ²⁸⁸115 alpha was observed at A/q=288
- One chain beginning with a ²⁴⁸113 alpha was observed at A/q=284

Next Step: BANSHE

- Have:
 - focal plane detector
 - Clover detectors
 - LEGe
- Want: high-resolution α-γ- or e-γ spectroscopy on mass-separated isotopes

Building BANSHE Vacuum chamber Cube out the back • 1-mm thick walls

Jacklyn M. Gates

Next Step: BANSHE

Step 1: Modify detector position of FIONA with updated vacuum chamber and detector

Step 2: Surround the chamber with four clover detectors and one LEGe detector

Jacklyn M. Gates

Future Science Program

Mass separation and delivery to a low α -, γ -, n-background counting facility on a 10-ms timescale

- Mass number measurements of SHE →
 - E114, E116, E115 short chains
 - Search for multiple decay paths
- Spectroscopy on mass-separated isotopes → BANSHE
 - Search for electron-capture decay
 - Determination of single-particle energies
 - Nuclear structure and nuclear shapes
- Chemistry inside the RFQ trap →
 - A/q of reaction products
 - reaction times
 - · limits on ionization potentials and bond dissociation energies

54th ASRC International Workshop Sakura – Mar 25, 2019 29

 $SO_{2} \rightarrow Lr^{+} SO_{2*}$

BERKELEY, CALIFORNIA

Jacklyn M. Gates