Cosmic Cauldrons and Exotic Nuclei: New reaction theory developments for determining unknown cross sections

Jutta Escher

Lawrence Livermore National Laboratory, Livermore, USA

Lawrence Livermore National Laboratory

LLNL-PRES-758632

Partially supported by LDRD 19-ERD-017

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC Where do the chemical elements come from? Nuclear reactions are key to this question!

Collaborators:

LLNL: J. Burke, R. Casperson, R. Hughes, A. Ratkiewicz, N. Scielzo, W. Younes <u>Texas A&M:</u> S. Ota <u>Rutgers:</u> J. Cizewski <u>MSU/FRIB:</u> G. Potel

ASRC International Workshop Nuclear Fission and Structure of Exotic Nuclei (Sakura 2019) Tokai, Japan

March 24-27, 2019

Nuclear reactions play a key role in the production of the elements

Nuclear reactions play a key role in the production of the elements

s-process: (n,γ) on branch point nuclei r-process: (n,γ) on very n-rich nuclei p-process: (p,γ) on n-poor nuclei

Neutron capture reactions

Hauser-Feshbach formalism:

$$\frac{d\sigma_{\alpha\chi}^{HF}(E_a)}{dE_{\chi}} = \pi \lambda_{\alpha}^2 \sum_{J\pi} \omega_{\alpha}^J \sum_{\ell s \ell' s' I'} \frac{T_{\alpha\ell s}^J T_{\chi\ell' s''}^J \rho_{I'}(U') W_{\alpha\chi}(J)}{\sum_{\chi'' \ell'' s''} T_{\chi'' \ell'' s''}^J + \sum_{\chi'' \ell'' s'' I''} \int T_{\chi'' \ell'' s''}^J (E_{\chi''}) \rho_{I''}(U'') dE_{\chi''}}$$

Neutron capture reactions

Hauser-Feshbach formalism:

$$\frac{d\sigma_{\alpha\chi}^{HF}(E_a)}{dE_{\chi}} = \pi \lambda_{\alpha}^2 \sum_{J\pi} \omega_{\alpha}^J \sum_{\ell s \ell' s' I'} \frac{T_{\alpha\ell s}^J T_{\chi\ell' s'}^J \rho_{I'}(U') W_{\alpha\chi}(J)}{\sum_{\chi'' \ell'' s''} T_{\chi'' \ell'' s''}^J + \sum_{\chi'' \ell'' s'' I''} \int T_{\chi'' \ell'' s''}^J (E_{\chi''}) \rho_{I''}(U'') dE_{\chi''}}$$

Hauser-Feshbach formalism:

 $\frac{d\sigma_{\alpha\chi}^{HF}(E_a)}{dE_{\chi}} = \pi \lambda_{\alpha}^2 \sum_{J\pi} \omega_{\alpha}^J \sum_{\ell s \ell' s' I'} \frac{T_{\alpha\ell s}^J T_{\chi\ell' s'}^J \rho_{I'}(U') W_{\alpha\chi}(J)}{\sum_{\chi'' \ell'' s''} T_{\chi'' \ell'' s''}^J + \sum_{\chi'' \ell'' s'' I''} \int T_{\chi'' \ell'' s''}^J (E_{\chi''}) \rho_{I''}(U'') dE_{\chi''}}$

Capture cross sections from surrogate (p,d) reaction

Escher et al, RMP 84 (2012) 353

Neutron hole structure relevant to (p,d) reaction?

Structure of deep neutron holes

Structure Challenge:

What is the structure of deep neutron holes? Location? Fragmentation?

Dispersive Optical Model

• Connects OMP for scattering to nuclear mean field:

Empirical scattering information yields OMP at positive energies

Mean field gives energyaveraged nuclear properties: single-particle E_{nlj} , spectral functions S_{nlj} , etc.

 DOMP of renewed interest for obtaining reliable potentials for scattering calculations

Mahaux & Sartor, Adv. Nucl. Phys. 1991 Delaroche et al, PRC 39, 391 (1989)

Gives energy-averaged nuclear properties

Reaction mechanism includes higher-order processes

First-order processes:

- neutron pickup makes deep hole
- Reaction calculation uses DWBA with S_{nlj} from DOMP
 DWBA: Distorted-Wave Born
 Approximation

Reaction Challenge:

Standard DWBA (p,d) calculations insufficient Two-step mechanisms important

Reaction mechanism includes higher-order processes

Reaction Challenge:

Standard DWBA (p,d) calculations insufficient Two-step mechanisms important

First-order processes:

- neutron pickup makes deep hole
- Reaction calculation uses DWBA with S_{nlj} from DOMP
 DWBA: Distorted-Wave Born
 Approximation

Second-order processes:

Inelastic scattering preceeds
or follows neutron pickup

(p,d',d) analogously

CN formation involves 2-step processes

(p,d',d) analogously

Result: Compound-Nucleus Formation via (p,d)

High energies (region of interest):

- absolute cross section approximately reproduced, no normalization!
- 2-step processes dominate
- measurement and calculation agree, model assumptions valid

Result: Compound-Nucleus J^{π} Distribution

Spin-parity distribution:

- As function of excitation energy of ⁹¹Zr
- Calculated from relative contributions of final J^{π} to total (p,d) cross section
- Contributions from spins up to ~J=10

PHYSICAL REVIEW LETTERS 121, 052501 (2018)

- Select relevant 91 Zr γ transitions
- Fit to data from 0.5 MeV below S_n to 1.5 MeV above S_n

Fit yields best set of parameters & uncertainty estimate. $P_{(p,d\gamma)}(E) = \sum_{J,\pi} F_{(p,d)}^{CN}(E,J,\pi) \cdot G^{CN}_{\gamma}(E,J,\pi)$

⁹⁰Zr(n,γ) cross section from surrogate (p,d) data

- Surrogate data constrains cross section up to E_n=1.5 MeV
- Result in agreement with direct measurements & evaluations
- Result includes experimental & theoretical uncertainties

⁸⁹Y(p,d) singles results

- Procedure is analogous to the Zr case
- Special feature: Isobaric Analog States (IAS)

Range of fit 0.08 0.08 0.3 0.25 0.0 0.06 Probability 0.04 0.04 0.15 0.1 0.02 0.02 (b) 142 keV $_{0.05}|_{-}(c)$ 232 keV (a) 128 keV HI III $5^+ \rightarrow 6^+$ $4^+ \rightarrow 5^+$ 5⁻→4⁻ 0.08 0.08 0.08 0.06 0.06 Probability 0.06 0.0 0.04 0.04 0.02 0.02 0.02 (e) 373 keV (d) 299 keV (f) 879 keV $3^+ \rightarrow 4^+$ $0^+ \rightarrow 1^+$ 4[°]→ 5[°] ⁸ E_{cx}[MeV] ⁹ ⁸ E_{cr}[MeV] ⁹ 10 ⁸ E_{ex}[MeV] ⁹ 10 11

PHYSICAL REVIEW LETTERS 121, 052501 (2018)

- Procedure is analogous to the Zr case
- Special feature: Isobaric Analog States (IAS)

⁸⁹Y(p,dγ) – Bayesian fit to surrogate data

Fit yields best set of parameters & uncertainty estimate. $P_{(p,d\gamma)}(E) = \sum_{J,\pi} F_{(p,d)}{}^{CN}(E,J,\pi) \cdot G^{CN}{}_{\gamma}(E,J,\pi)$

⁸⁷Y(n, γ) cross section from surrogate (p,d) data

Surrogate data constrains cross section up to E_n=1.5 MeV Result differs from evaluations (based on regional systematics) Result includes experimental & theoretical uncertainties

Escher et al, PRL 121, 025501 (2018)

Towards inverse-kinematics applications with RIBs... ...the (d,p) reaction

observed

(d,p) reaction: ideal substitute for n+A?

Towards inverse-kinematics applications with RIBs... ...the (d,p) reaction

Inclusive (d,p) reactions recently revisited: formalism

- Based on earlier work by Udagawa & Tamura and Ichimura, Austern & Vincent
- Goal: describe breakup-fusion, which contains CN formation
- Potel et al, PRC 92, 034611 (2015)
- Lei & Moro, PRC 92, 044616 (2015)
- Carlson et al, Few-Body Syst 57, 307 (2016), arxiv:1508.01466

Applications:

- Comparison to ⁹³Nb(d,p) inclusive cross sections Potel et al., PRC 92, 034611 (2015)
- Predictions for ^{40,48,60}Ca(d,p γ) Potel et al., EPJ 53, 178 (2017)
- Application: Surrogate for ⁹⁵Mo(n,γ) with Cizewski, Ratkiewicz et al.: Measurements in regular and inverse kinematics, at Texas A&M and ANL, respectively

PHYSICAL REVIEW LETTERS 122, 052502 (2019)

$^{95}\text{Mo}(n,\gamma)$ cross section from surrogate (d,p $\gamma)$ data, reaction theory, and decay modeling

Excellent agreement of cross section with benchmark. This is encouraging for inverse-kinematics (d,p) measurements.

$^{95}Mo(n,\gamma)$ cross section from surrogate (d,p γ) data, reaction theory, and decay modeling

Excellent agreement of cross section with benchmark. This is encouraging for inverse-kinematics (d,p) measurements. The theoretical description of (d,p) is critical to obtaining (n,γ) .

Inelastic scattering as a surrogate reaction? The ⁹⁰Zr(n,2n) cross section as a first goal

Inelastic scattering:

Benchmark case:

- Potentially useful in inverse kinematics
- Reaction populates wide range of E_{ex}
- Progress in nuclear structure calculations: (Q)RPA transition densities now available

Using inelastic scattering to determine (n,γ) , (n,n'), (n,2n)Preliminary Work in progress

Experiment at LBNL:

- ^{90,91,92}Zr(³He,³He') and ⁸⁹Y(³He,³He')
- Measured by N.D. Scielzo et al
- Goal: determine (n,2n) cross section
- Observed γ -rays in 3 isotopes, corresponding to (n,γ) , (n,n'), (n,2n)
- Inelastic scattering calculations using (Q)RPA transition densities
- Decay calculations simultaneously reproduce observed γ

⁹¹Zr

Data from N.D. Scielzo

What else can we do with the surrogate reactions approach?

- Can we determine reactions involving isomers?
- Can we determine proton-induced reactions?
- Can we determine fission cross sections?

We can we determine reactions involving isomers!

We can we determine reactions involving isomers!

29

(n,f) cross sections from surrogate measurements

R.J. Caperson et al, PRC 84 (2014) 353

- Typically agree within 10-15% with benchmarks ٠
- Use Weisskopf-Ewing approximation: ignore spin distribution

Concluding remarks

General:

- Cross sections for reactions on unstable isotopes are important & difficult to determine
- Indirect methods are critical & need further development
- Complementary methods are needed to reach large number of isotopes and to cross-check

Light-ion surrogate reactions:

- Different target-projectile combinations possible, method can be used at RIB facilities in inverse kinematics
- Method does not use D_0 or $<\Gamma_{\gamma}>$
- Understanding CN formation is important to account for spin-parity mismatch (inelastic scattering, pickup, stripping)
- Concept also applicable to other reactions: (p,γ), (n,2n), (n,f), reactions involving isomers, etc.

A thank-you to my collaborators:

- J. Burke, R. Casperson, R. Hughes, A. Ratkiewicz, N. Scielzo, W. Younes (LLNL)
- S. Ota (Texas A&M), J. Cizewski (Rutgers), G. Potel (MSU/FRIB)