Theoretical study on formation mechanisms of Z=120 super-heavy elements

S. Ebata, S.Chiba, F. Ivanyuk, V. Litnevsky

Tokyo Institute of Technology

Key words: Super-heavy element, Fusion, TDMF calculation

Introduction

30th Nov. 2016

RIKEN http://www.nishina.riken.jp/113

Beyond Nh (Og)!!

Motivation

- To simulate a synthesis process of the super-heavy element and to deduce the synthesis probability $P_{\rm SHE}$ using theoretical methods.

 In order to construct the hybrid model including suitable methods to describe the processes on touching, fusion, compound formation and evaporation, to simulate the synthesis process.

Motivation

- To simulate a synthesis process of the super-heavy element and to deduce the synthesis probability $P_{\rm SHE}$ using theoretical methods.
- In order to construct the hybrid model including suitable methods to describe the processes on touching, fusion, compound formation and evaporation, to simulate the synthesis process.
 - > Physical quantities on the touching process described a microscopic method.
 - We apply the time-dependent mean-field theory to ²⁴⁸Cm+⁵⁴Cr, and acquire experience on the super-heavy element (Z=120) synthesis.

Purpose of this work

We show the calculations of ²⁴⁸Cm+⁵⁴Cr fusion reaction using the **canonical-basis time-dependent Hartree-Fock-Bogoliubov (Cb-TDHFB**) theory, to check the **nucleon densities** and **energy balance** on the dynamics, for more accurate simulation, this is one of benchmark calculation.

$Method \ \ {\rm Time-dependent} \ density \ functional \ theory$

Cb-TDHFB S.E. et al., Phys. Rev. C82(2010) 034306, S.E. and T.Nakatsukasa, JPS Conf. Proc. 6, 020056 (2015)

Interaction (ph) : Skyrme (SkM* w/o Center of Mass correction),
(pp, hh) : delta-function
$$V^{\tau}(\mathbf{r}_{1}, \sigma_{1}; \mathbf{r}_{2}, \sigma_{2}) = V_{pair}^{\tau} \frac{1 - \hat{\sigma}_{1} \cdot \hat{\sigma}_{2}}{4} \delta(\mathbf{r}_{1} - \mathbf{r}_{2})$$
 $\Delta_{l}(t) = -\sum_{k>0} \kappa_{k}(t) V_{l\bar{l}k\bar{k}}(t)$
Cb-TDHFB equations
 $i\hbar \frac{\partial}{\partial t} |\phi_{k}(t)\rangle = (h(t) - \eta_{k}(t)) |\phi_{k}(t)\rangle$
 $i\hbar \frac{\partial}{\partial t} \rho_{k}(t) = \kappa_{k}(t)\Delta_{k}^{*}(t) - \Delta_{k}(t)\kappa_{k}^{*}(t)$
 $i\hbar \frac{\partial}{\partial t} \kappa_{k}(t) = (\eta_{k}(t) + \eta_{\bar{k}}(t))\kappa_{k}(t) + \Delta_{k}(t)(2\rho_{k}(t) - 1)$
 $\lambda_{l}(t) = -\sum_{k>0} \kappa_{k}(t)V_{l\bar{l}k\bar{k}}(t)$
Properties of Cb-TDHFB
 $d/dt\langle\phi_{k}(t)|\phi_{k'}(t)\rangle = 0$
 $d/dt\langle\hat{N}\rangle = 0, \ d/dtE_{\text{Total}} = 0$
In the limit of $\Delta=0 \longrightarrow \text{TDHF}$
In the static limit, $\longrightarrow \text{HF+BCS}$
 $i\hbar \frac{\partial}{\partial t}\kappa_{k}(t) = (\eta_{k}(t) + \eta_{\bar{k}}(t))\kappa_{k}(t) + \Delta_{k}(t)(2\rho_{k}(t) - 1)$
 $\eta_{k}(t) \equiv \langle\phi_{k}(t)|h(t)|\phi_{k}(t)\rangle + i\hbar \langle\frac{\partial\phi_{k}}{\partial t}|\phi_{k}\rangle$

Subjective reaction system: ${}^{248}Cm + {}^{54}Cr \rightarrow {}^{302}120$

E_{in} = 300, 310, 320, 330, 340 [MeV]

Pairing strength V_{pair} for target and projectile are defined to reproduce the Δ^{v} , Δ^{π} deduced by 3-points formula. Averaged pairing strength of nuclei is used in the Cb-TDHFB calculation.

e.g.
$$\Delta_3^{\nu}(N,Z) \equiv \frac{1}{2}(B(N-1,Z) + B(N+1,Z) - 2B(N,Z))$$

$Method \ \ {\rm Procedure} \ for \ the \ reaction \ calculation$

- 1, Calculate the ground states of ²⁴⁸Cm, ⁵⁴Cr using 3D Skyrme HF+BCS self-consistently.
- 2, Set the ²⁴⁸Cm, ⁵⁴Cr on the points with the distance working Coulomb force dominantly.
- 3, Boost them with an energy E_{in} considering the incidence from the infinite-point.
- 4, Calculate the nuclear dynamics with Cb-TDHFB.

Calculation space (3D Cartesian coordinate)

Rectangular box of 30 fm × 30 fm × 60 fm, discretized in the square mesh of $\Delta x = \Delta y = \Delta z = 1.0$ fm

Calculate the head-on collision (*b=0*).

Results (Coulomb barrier height: Frozen Density Approximation)

²⁴⁸Cm has quadrupole deformed shape

 \rightarrow The Coulomb barrier heights are different depending on the reaction direction.

Results (Coulomb barrier height: Frozen Density Approximation)

²⁴⁸Cm has quadrupole deformed shape

 \rightarrow The Coulomb barrier heights are different depending on the reaction direction.

Results (TD Cal. : Neutron density distribution)

Results (TD Cal. : Neutron density distribution)

✓ For the fusion, (at least) E_{in} = 310 MeV is necessary. (Coulomb barrier E^v=245MeV)

Results (TD Cal. : Quadrupole momentum)

Results (TD Cal. : Energy balance on E_{in} =340MeV reaction)

Time-dependence of energy change from initial state $dE_{\mu}(t) = E_{\mu}(t) - E_{\mu}(0^{-})$

 $\mu = \{\text{Total}, \text{Kinetic}, \text{Central}, \text{LS}, \text{Coulomb}, \text{Pairing}\}$

Summary

- ✓ We calculate the head-on reaction ²⁴⁸Cm+⁵⁴Cr → ³⁰²120 using Cb-TDHFB, with E_{in} = 300, 310, 320, 330, 340 MeV.
 - ✓ The Coulomb barriers of ²⁴⁸Cm+⁵⁴Cr are evaluated 245 (vertical) and 222 (parallel) MeV on the reaction direction using Frozen density approximation.
 - ✓ Over 60 MeV from Coulomb barrier is necessary for the fusion.
 - We describe the energy balance on the fusion reaction using Cb-TDHFB.

Future work

- > To distinguish Quasi-fission and Fusion, more long-time calculation is necessary.
 - > Optimization of the calculation space and Revision of algorithm to time-evolution
- \blacktriangleright Large-scale calculation for P_{touch} w.r.t the impact parameter, nuclear rotation
- > For pairing correlation: strength, functional form, phase among target and projectile

Again ...

Multistep Hauser-Feshbach decay calculation

BeoH : Okumura, Kawano, SC. J. Nucl. Sci. Technol., 55,1009–1023(2018).

Results from AMD+Langevin+HF

Initial U [*] =50	0n	1n	2n	3n	4n
Residue	³⁰² 120	³⁰¹ 120	³⁰⁰ 120	²⁹⁹ 120	²⁹⁸ 120
<u*> (MeV)</u*>	50	39.7	32.3	23.6	17.1
(1) P_{CNF}	7.54×10^{-4}	7.87 × 10⁻⁵	3.41 × 10 ⁻⁵	2.33×10^{-6}	5.79 × 10 ⁻⁹
(2)P _{surv}	1.87 × 10 ⁻⁸	1.30 × 10 ⁻⁷	1.18 × 10 ^{−6}	9.71 × 10 ^{−6}	1.70 × 10 ⁻⁵
$P_{CNF} \times P_{surv}$ (1) × (2)	1.41 × 10 ⁻¹¹	1.02×10^{-11}	4.02×10^{-11}	2.26×10^{-11}	9.84 × 10 ⁻¹⁴

Summary

✓ We calculate the head-on reaction ²⁴⁸Cm+⁵⁴Cr → ³⁰²120 using Cb-TDHFB, with E_{in} = 300, 310, 320, 330, 340 MeV.

- ✓ The Coulomb barriers of ²⁴⁸Cm+⁵⁴Cr are evaluated 245 (vertical) and 222 (parallel) MeV on the reaction direction using Frozen density approximation.
- ✓ Over 60 MeV from Coulomb barrier is necessary for the fusion.
 - We describe the energy balance on the fusion reaction using Cb-TDHFB.

Future work

- > To distinguish Quasi-fission and Fusion, more long-time calculation is necessary.
 - Optimization of the calculation space and Revision of algorithm to time-evolution
- > Large-scale calculation for P_{touch} w.r.t the impact parameter, nuclear rotation
- > For pairing correlation: strength, functional form, phase among target and projectile

Thank you!