II. Physikalisches Institut

Spontaneous fission studies with the FRS Ion Catcher

Timo Dickel GSI Darmstadt, JLU Gießen

- How to study the properties of exotic nuclei via mass spectrometry
- The FRS Ion Catcher @ GSI
 - Setup
 - Results
- Commissioning / first results from ²⁵²Cf
- Outlook
 - Next steps and improvements for the spontaneous fission
 - MNT studies at the FRS and at JYFLTRAP

Mass and Binding Energy

The mass of an atomic nucleus reflects its binding energy and hence its stability and structure

Z Protons (Proton number) N Neutrons (Neutron number) A = N + Z (Mass number) B = Binding energy

Nuclear mass: $M(N, Z) = Z \cdot m_p + N \cdot m_n - B(N, Z)/c^2$

 $S_n = m({}^{A-1}_Z X_{N-1}) + m(n) - m({}^A_Z X_N)$

Structure & Dynamics of Exotic Nuclei

Precision mass measurements \rightarrow unambigious identification in A and Z

Mass Measurement Techniques for Exotic nuclei

"Standard" Methods

Storage Rings

Penning Trap MS (TOF-ICR-MS)

No Method is highly accurate, sensitive and fast

TOF Mass Spectrometry for diagnosis and separation

Enables high performance

- Fast \rightarrow access to very short-lived ions (T_{1/2} ~ ms)
- Sensitive, broadband, non-scanning \rightarrow efficient, access to rare ions Isochronous

SEV Mass Spectrum Injection Analyser trac m/q

To achieve high mass resolving power and accuracy:

Multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS)

H. Wollnik et al., Int. J. Mass Spectrom. Ion Processes 96 (1990) 267

Applications

- Diagnostics measurements: monitor production, separation and low-energy beam preparation of exotic nuclei
- Direct mass measurements of exotic nuclei
- High-resolution mass separator

W.R. Plaß et al., Int. J. Mass Spectrom. 394 (2013) 134

C. Scheidenberger et al., Hyperfine Interact. 132 (2001) 531

W.R. Plaß et al., NIM B 266 (2008) 4560 T. Dickel et al., Phys. Lett. B 744 (2015) 137

Concept: Cryogenic Stopping Cell (CSC)

IGISOL/Stopping cells:

- **Fast** \rightarrow access to short-lived exotic nuclides (T_{1/2} ~ ms)
- Universal → element-independent
- Efficient → highest stopping and extraction efficiency

M. Wada NIM B 317 (2013) 450

Cryogenic Operation

• Clean \rightarrow ion beams of high cleanliness

M. Ranjan et al., Europhys. Lett. 96 (2011) 52001 Purushothaman S. et al, EPL 104 (2013) 42001

Prototype of the Stopping Cell: Design

FRS Ion Catcher: Test Facility for the LEB@SuperFRS

FRS Ion Catcher

²³⁸Uranium Fission Fragments

- Mass measurement of uranium fission products produced at 1000 MeV/u
- MR-TOF-MS will enable efficient search and measurement of new isotopes and isomers

Achieved Accuracy of the Mass Measurement

- Data evaluation developed for low statistics and overlapping peaks
- 31 masses of 16 different elements including 6 isomeric states:
 - Relative deviations down to 6-10⁻⁸
 - Excitation energies of isomeric states down to 280 keV

S. Ayet et al., submitted to PRC, arXiv:1901.11278v1

²⁵²Cf spontaneous fission source

²⁵²Cf spontaneous fission source (37kBq) is mounted in the inner chamber of CSC:

- \rightarrow systematics of spontaneous fission
 - \rightarrow independent fission yields
 - → isomer-to-ground ratios

in collaboration with Uppsalla University

More than 15 fission fragments identified:

- one hour measurement
- 37kBq

About 70 fission fragments identified in first run (about 50 hours, 3 weeks ago)

" Ba	¹⁰ 6a	¹¹ 6a	e Ba	²¹ Ba	¹² Ba	²² Ba	et Ba	¹⁰ Ba	²⁵ Ba	1 ¹⁰ Ba	²⁸ Ba	²⁹ Ba	¹⁰ Ba	¹⁰ Ba	¹⁰² Ba	¹⁰ Ba	⁸⁴ Ba	¹⁰ Ba	¹⁰⁶ Ba	¹⁰ Ba	^{us} Ba	¹⁰ Ba	¹⁰ Ba	¹⁰ Ba	^{N2} Ba	¹¹² Ba	^{#4} Ba	¹⁴⁵ Ba
						Ь		Ь		Ь		Ы	Ь			Ы	Ь		Ы	Ы	Ь							
"" Cs	" Cs	" Cs	" Cs	²⁰ Cs	²¹ Cs	¹²² Cs	²³ Cs	²⁴ CS	ES CS	¹²⁶ CS	¹²⁷ CS	²¹ Cs	E CS	^W Cs	^{a1} Cs	^{W2} CS	¹¹¹ Cs	¹¹⁴ CS	⁸⁵ Cs	¹⁰⁶ CS	^w Cs	¹⁰¹ Cs	^{uu} Cs	^{NO} CS	^{HI} CS	^{M2} Cs	ND CS	^{##} Cs
ЪЦ		Ы		Ь	Ь	Ш		Ь	Ь				b_						Ь	Ы								bn_
18 Xe	™ Xe	"Xe	™ Xe	™ Xe	²⁰ Xe	¹²¹ Xe	¹²² Xe	²³ Xe	Er Xe	¹²⁵ Xe	¹²⁶ Xe	¹⁰ Xe	²⁸ Xe	²⁹ Xe	™ Xe	" Xe	¹¹² Xe	™ Xe	^{sa} Xe	¹⁰⁵ Xe	¹¹⁶ Xe	^w Xe	" Xe	¹⁰⁸ Xe	¹¹⁰ Xe	^w Xe	^{N2} Xe	^{₩2} Xe
								Ь				Ы	b_	Ь		ЬЛ	<u> </u>			Ь	ЬЦ							
МI	15	ι.	m I	¹⁸ I	1	50 I	1 1	122	8	124 I	⁸⁵	²⁵	1	128	28	1 ¹⁰	¹⁰¹	1 ¹⁰	"	Bi I	¹⁸⁵	105	" I	¹⁸	11 I	¹⁰	×1	142 I
า		Ь		Ь			Ь					Ь					<u> </u>											
" Te	™ Te	" Te	™ Te	" Te	" Te	" Te	v Te	^{g1} Te	¹²² Te	123 Te	¹²⁴ Te	^{es} Te	¹²⁶ Te	¹²⁷ Te	¹²⁸ Te	²⁵ Te	¹⁰⁰ Te	^m Te	^{HZ} Te	¹⁰ Te	¹⁶⁴ Te	¹⁰⁵ Te	^{us} Te	" Te	" Te	^{us} Te	× Te	^{H1} Te
						Ь		Ь				Ь				Ь												
"² Sb	™ Sb	™ Sb	" Sb	" ^s Sb	" Sb	™ Sb	" Sb	²⁰ Sb	¹²¹ Sb	¹²² Sb	¹²⁸ Sb	²¹ Sb	¹²⁵ Sb	¹²⁶ Sb	²⁷ Sb	²³ Sb	¹⁰ Sb	¹⁰⁰ Sb	^{ui} Sb	¹¹² Sb	¹¹³ Sb	¹¹⁴ Sb	¹⁰ Sb	¹¹⁶ Sb	^w Sb	¹¹⁸ Sb	¹¹¹ Sb	¹⁴⁰ Sb
า		Ы														Ь						Ы						
" Sn	™ Sn	" Sn	™ Sn	"" Sn	" Sn	" Sn	"" Sn	" Sn	²⁰ Sn	^{e1} Sn	¹²² Sn	²³ Sn	^{e4} Sn	¹⁰ Sn	¹⁰⁶ Sn	¹²⁷ Sn	¹²⁸ Sn	²⁹ Sn	¹⁰ Sn	¹⁰ Sn	¹¹² Sn	¹⁰ Sn	¹²⁴ Sn	¹⁰⁵ Sn	¹⁰⁶ Sn	¹⁰⁷ Sn	¹⁰ Sn	** Sn
า		Ы	ᄂᆜ	╘───┘		ЬШ					Ш	ЬШ				Ш	ഥ			ЬIJ	ᄂᆜ		Ы				ᄂᆜ	
" In		12 In	" In	^{nx} In	a II	¹⁶ In	" In	" In	s.	n a	^{en} In	n 19	²³ In	²⁴ In	¹²⁵ In	¹²⁵ In	¹⁰ In	¹⁰ In	²³ In	¹⁰ In	^{ui} In	^{sz} In	²² In	^{sz} In	¹⁰ In	^{se} In	¹⁰ In	
า		닖	ᄂᆜ			ш		ЬШ	ᆈ		ш	ш				Ш				ш	닖		Ы					
" Cd	" Cd	" Cd	™ Cd	"° Cd	™ Cd	¹⁵ Cd	"" Cd	" Cd	" Cd	" Cd	²⁰ Cd	21 Cd	¹²² Cd	¹² Cd	Er Cq	²⁵ Cd	¹²⁶ Cd	v ⁷ Cd	23 Cd	²¹ Cd	¹⁰ Cd	** Cd	¹¹² Cd	¹⁰³ Cd	^{a4} Cd			
		ЬIJ														ЬIJ				ЬIJ								
" Ag	" Ag	" Ag	" Ag	"² Ag	" Ag	™ Ag	¹¹⁵ Ag	" ^s Ag	" Ag	¹⁸ Ag	¹¹⁸ Ag	²⁹ Ag	^{e1} Ag	** Ag	¹²⁸ Ag	er Va	¹²⁵ Ag	¹⁰⁵ Ag	¹⁰ Ag	²⁸ Ag	²⁹ Ag	** Ag	¹⁰¹ Ag	⁸² Ag				
<u> </u>													<u>b</u>															
** Pd	** Pd	** Pd	" Pd	" Pd	" Pd	"" Pd	"" Pd	"" Pd	" Pd	" Pd	"" Pd	" Pd	2º Pd	²¹ Pd	¹²² Pd	²³ Pd	^{ee} Pd	¹⁰⁵ Pd	²⁶ Pd	¹²⁷ Pd	²⁸ Pd	²⁸ Pd						
믜																	느		Ш									
" Rh	** Rh	^{ue} Rh	¹⁰ Rh	"" Rh	" Bh	™ Rh	"" Rh	™ Rh	¹⁰ Rh	" ^s Rh	^w Rh	" Rh	"Rh	²⁰ Rh	21 Rh	¹²² Rh	¹²⁸ Rh	²⁴ Rh	¹²⁵ Rh	¹²⁶ Rh	¹²⁷ Rh							
긔																												
⁰⁵ Ru	¹⁶ Ru	^w Ru	¹⁰⁸ Ru	¹⁰⁸ Ru	"" Ru	" Ru	¹⁰ Ru	¹¹⁰ Ru	¹⁴ Ru	¹⁰ Ru	"" Ru	" Ru	™ Ru	" Ru	²⁰ Ru	²¹ Ru	¹²² Ru	¹²⁸ Ru	¹²⁴ Ru									
긔																		ĮL										
" TC	" Tc	" TC	" TC	"" TC	" TC	" TC	JT "	TC TC	1 C	^{IN} TC	" TC	* T C	1 TC	¹¹⁸ Tc	" TC	^{EI} TC	¹²¹ Tc											
" Mo	** Mo	"" Mo	"" Mo	" Mo	** Mo	** Mo	Mo Mo	" Mo	" Mo	" Mo	¹¹⁴ Mo	" Mo	™ Mo	™ Mo	"" Mo													
" Nb	** Nb	™ Nb	" Nb	" Nb	™ Nb	™ Nb	"Nb	" Nb	"Nb	™ Nb	™ Nb	" Nb	"Nb															

Next Steps and Improvements

- Upgrade Stopping and Transport Efficiency:
 - gain of an order of magnitude is expected
- Improved electrode structure
 - Factor 4 shorter extraction times
 - up to Factor 2 higher efficiency

• Stronger source ($37kBq \rightarrow 10MBq$)

 \rightarrow Accessible yields below 10⁻⁷

Study other spontaneous fissioning isotopes: e.g. ²⁴⁸Cm

MNT studies with the FRS-IC

Universal, efficient, sensitive and broadband method:

- Different beams (primary and secondary) from the (Super-)FRS
- CSC: universal, fast, efficient, clean extraction of all reaction products
 - Target (TLF) and projectile-like fragments (PLF) in one experiment
- MR-TOF-MS: Tens of different products measured simultaneously
- "Direct physics results":
 - > New masses
 - Discovery of long-lived isomers (G.D. Dracoulis et al., Phys. Scr. T152 (2013) 014015)

MNT studies at the FRS and JYFLTRAP

At JYFLTRAP:

¹³⁶Xe on ²⁰⁹Bi: alpha decaying products

→ Proof-of-concept and study of isomer to ground state ratios ¹³⁶Xe on ¹⁹⁸Pt: half-live measurements of neutron-rich nuclides

Summary and Outlook

The FRS Ion Catcher

- Unique capabilities:
 - Efficient thermalization of fission products
 - Broadband measurements with full ID
 - High mass accuracy, down to 6*10⁻⁸
 - High sensitivity
- Novel way to study spontaneous fission
 - independent fission yields
 - isomer-to-ground state ratios

Outlook:

- Upgrade of system \rightarrow access to yields below 10⁻⁷
- Experiments to study MNT reactions at FRS and at JYFLTRAP
- Experiments in FAIR Phase-0

Acknowledgements

FRS Ion Catcher Collaboration

D. Amanbayev¹, S. Ayet^{1,2}, B. Soumya^{2,9}, J. Bergmann¹, P. Constantin⁶, T. Dickel^{1,2}, M. Diwisch¹, J. Ebert¹, A. Finley⁷, H. Geissel^{1,2}, F. Greiner¹, E. Haettner², C.Hornung¹, S. Kaur⁸, R. Knöbel², W.Lippert¹, I. Mardor^{10,11}, B. Mei⁶, I. Miskun¹, I. Moore³, J.-H. Otto¹, Z. Patyk⁴, S. Pietri², A. Pikhtelev⁸, W.R. Plaß^{1,2}, I. Pohjalainen³, A. Prochazka², S. Purushothaman², C. Rappold², M.P. Reiter^{1,7}, A.-K. Rink¹, C. Scheidenberger², M. Takechi², Y. Tanaka², H. Toernquist², H. Weick², J.S. Winfield², X.Xu^{1,2}, M.I. Yavor⁵

¹Justus-Liebig-Universität Gießen, Gießen, Germany;
² GSI, Darmstadt, Germany;
³ University of Jyväskylä, Jyväskylä, Finland;
⁴ National Centre for Nucl. Res., Warszawa, Poland
⁵ Institute for Analytical Instrum., RAS, St. Petersburg, Russia;
⁶ ELI-NP, Bucharest, Romania;
⁷ TRIUMF, Vancouver, Canada;
⁸ Inst. for E. Prob. of Chem. Phys., RAS, Chernogolovka, Russia;
⁹Saint Mary's University, Halifax, Canada
¹⁰Soreq NRC, Yavne, Israel
¹¹ Tel Aviv University, Tel Aviv, Israel

Hessisches

und Kunst

Ministerium für

Wissenschaft

Funding: BMBF (05P12RGFN8, 05P16RGFN1), State of Hesse (HMWK) (LOEWE Center HICforFAIR), HGS-HIRe, JLU Giessen and GSI (JLU-GSI strategic Helmholtz partnership agreement)

Federal Minist of Education and Research HESSEN

Scheme - Landes-Offensive zur Entwicklung Wissenschaftlichökonomischer Exzellenz

GEMEINSCHAFT

HGS-HIRe for FAIR Helmholtz Graduate School for Hadron and Ion Research