Alpha Decay and Fission of K-Isomers

Rod Clark

Outline

Alpha Decay

- stability of excited metastable states (isomers)
- superfluid tunneling model
- role of pairing, excitation energy, angular momentum

Fission

- stability against fission
- hindrances of isomers
- expectations for hindrance factors

Alpha Decay of K-Isomers: ²⁷⁰Ds (Z=110)

Office of

Science

Observation of alpha-decaying K-isomers with half-lives significantly longer than the ground state.

Implications for stability/survivability

Three major factors influencing alpha decay multi-QP states:

- Larger Q_{α} means shorter $T_{1/2}$
- Large ΔL means longer T_{1/2}
- Reduced pairing means longer T_{1/2}

Superfluid tunneling model used to estimate influence of these factors on alpha decay of multi-QP states.

J. Rissanen et al., PRC 90 044324 (2014) R.M. Clark and D. Rudolph, PRC 97 02433 (2018)

S. Hofmann et al., Eur. Phys. J. A 10 5 (2001), D. Ackermann, Prog. Theor. Phys. Suppl. 196 255 (2012)

Superfluid Tunneling Model (STM)

The Hamiltonian of the model is:

$$\left(-\frac{\hbar^2}{2D}\frac{\partial^2}{\partial\xi^2}+V(\xi)\right)\psi_n(\xi)=E_n\psi_n(\xi)$$

 ξ = generalized deformation variable D = inertial mass (depends on Δ) Δ = pairing gap = 12/ \sqrt{A} MeV

Calculation of decay constant: $\lambda = f \cdot P \cdot T$

P= preformation of decay configurationf = frequency of hitting barrierT = transmission coefficient through barrier

"Nuclear Superfluidity: Pairing in Finite Systems" David M. Brink and Ricardo A. Broglia Cambridge University Press, 2005

F. Barranco, G.F. Bertsch, R.A.Broglia, E.Vigezzi, NPA 512 253 (1990)

Alpha Decay of Even-Even Isotopes: Fm to Og

Reproducing Ground State Alpha Decays of SHN

Alpha Decay of K Isomers in ²⁷⁰Ds: Experiment

Based on:

Science

Reproducing Alpha Decays of K Isomers in ²⁷⁰Ds

α Decay of High-Spin Isomers in N=84 Isotones

Ambiguities in Decay Chains

Even-Z, Odd-N SHN

²⁹³Lv Decay Chains

Fission

Expectations of Fission Hindrance

Ground-state decay mode is 100% SF with half-life of ~23µs.

Possibility of long-lived isomers that may also have significant SF branch?

The excitation energy of the high-K 2-qp isomer is ~1 MeV (or the fission barrier height, B_f , is ~ 1MeV less for the isomer relative to the ground state).

This will result in a shorter fission half-life

This will result in a longer fission half-life

What do we expect for the fission hindrance of such a high-K isomer?

The Effect from Changing B_f

Simple Parabolic Fission Barrier

R. Vandenbosch and J.R. Huizenga, Nuclear Fission, Academic Press 1973

Loveland, Morrissey, and Seaborg, Nuclear Chemistry, Wiley and Sons 2006

The fission half life can be expressed as:

 $t_{1/2}=2.77 \times 10^{-21} \exp[2\pi(B_f)/\hbar\omega]$

Barrier height, Bf = 6 MeV

Barrier curvature = 0.5 MeV

→
$$t_{1/2} = 1.5 \times 10^{12} s$$

Barrier height, Bf = 5 MeV

Barrier curvature = 0.5 MeV

One expects the decay of the isomer to be $\sim 3 \times 10^5$ faster

The Effect from Odd-Odd Character

One expects the decay of the isomer to be $\sim 4 \times 10^8$ slower due to odd particles

Office of

Science

Fission Hindrances of Multi-QP Isomers

I'd expect K-isomer HF~10³-10⁵

F.G.Kondev, G.D.Dracoulis, T.Kibedi, Atomic Data and Nuclear Data Tables 103-104 (2015) 50

Office of

Science

Changing B_f by 1MeV gives HF of ~10⁻⁵

Odd-Odd "character" gives HF of $\sim 10^8$ - 10^{10}

Available data does not indicate such hindrances

²⁴⁴Cm, ²⁵⁰Fm, ²⁵⁴Rf all lower limits (no positive identification of a fission branch from isomer).

²⁵⁰No story changing (EM-decay branch reported at TAN15)

²⁶²Rf likely misassigned (M. Murakami et al., PRC 88 (2013) 024618)

Leaves ²⁵⁶Fm and ²⁵⁴No cases needing to be confirmed

Summary

- Alpha decay is probing stability of states in heaviest nuclei
- Clear indications of isomers providing extra stability
- All ingredients (Q_{α} , L, pairing) essential to understanding
- Superfluid Tunneling Model is able to reproduce known data
- Fission decay from isomeric states has yet to be confirmed
- It will provide a new tool to understand fission process

Office of

Science

- Pairing (dynamic), Specialization (role of odd particles, K purity)

ありがとうございます.

Thank you very much.

