Study on formation mechanisms of Z=120 elements with a hybrid model

Tokyo Tech

<u>S.Chiba</u>, Y.Ishii, S.Okumura, S.Ebata, T.Inakura (Tokyo Tech.) F.A.Ivanyuk (Kiev), V.Litnevsky (Omsk), A.Ono (Tohoku) and M.Kimura (Hokkaido)

~

ASRC International Workshop, "Nuclear Fission and Structure of Exotic Nuclei" Japan Atomic Energy Agency, Tokai, Japan, 25 – 27 March 2019

Talk by Morimoto-san in Hawaii2018

New RILAC + GARIS-III (started in 2019)

- ²⁴⁸Cm + ⁵¹V → 119
- ²⁴⁸Cm + ⁵⁴Cr → 120 (after the 119)

Purposes

- Motivated by Morimoto-san's talk. we wish to understand 1 formation mechanisms of superheavy elements (SHE)
- As a first and naive step, we started to construct a 2 framework to describe the whole process of SHE formation. starting from the touching process to statistical decay by eliminating free parameters as much as possible
- 3. We integrate models which we have developed at Tokyo Tech. with our collaborators, like antisymmetrized molecular dynamics (AMD), Cb-TDHFB, 3&4-dimensional Langevin equation, Hauser-Feshbach theory and so on, \rightarrow Hybrid model \neq Unified Model of Zagrebaev
- We calculate formation probability of Z=120 element by 4 ²⁴⁸Cm+⁵⁴Cr reactions and hopefully we will acquire experience on the physics of SHE formation

SHE formation process and theories available at Tokyo Tech.

SHE formation process and theories available at Tokyo Tech.

Antisymmetrized Molecular Dynamics : AMD

Akira ONO et al, Prog. Theor. Phys., 87, No. 5 (1992)

Mean Field + Stochastic NN collision

 $|\Phi(r_1, r_2, \dots, r_A)\rangle = \frac{1}{\sqrt{A!}} \operatorname{det}[\phi_i(r_j)]$ Total wave function: Single Slater det. Single particle w.f.: Gaussian coherent state: $\left\langle \vec{r} \middle| \phi_{\vec{Z}_i} \right\rangle = \left(\frac{2\nu}{\pi}\right)^{\frac{3}{4}} \exp \left[-\nu \left(\vec{r} - \frac{\vec{Z}_i}{\sqrt{\nu}}\right)^2\right] \chi_i$ $\vec{Z} = \sqrt{\nu}\vec{D} + \frac{\iota}{2\hbar\sqrt{\nu}}\vec{K}, \ \chi_i = p\uparrow, p\downarrow, n\uparrow, n\downarrow$ time-dependent
$$\begin{split} i\hbar \sum_{j\tau} C_{i\sigma,j\tau} \vec{Z}_{j\tau} &= \frac{\partial \mathcal{H}}{\partial Z_{i\sigma}^*} \\ \sigma, \tau &= \{x, y, z\} \end{split} \quad \mathcal{H} = \frac{\langle \Phi | \hat{H} | \Phi \rangle}{\langle \Phi | \Phi \rangle}, \ C_{i\sigma,j\tau} &= \frac{\partial^2}{\partial Z_{i\sigma}^* \partial Z_{j\tau}} \log \langle \phi_i | \phi_j \rangle \end{split}$$
variational principle \rightarrow Equation of motion Effective interaction: SLy4 Stochastic NN collision (like in cascade model) gives rise to branching of wave function→distribution

Trial calculation: ⁵⁴Cr (310MeV) + ²⁴⁸Cm by AMD

b = 0.03 fm

b = 3.12 fm

⁶⁰Mn+²⁴²Am

 $^{53}V + ^{249}Bk$

Touching process (b=0) by AMD ${}^{54}Cr(324MeV) + {}^{248}Cm \rightarrow {}^{302}120$

The fates of these 2 events are different due to stochasticity brought by the NN collision

Hybrid model of SHE formation of Tokyo Tech.

Excitation energy of initial composite nuclei in ${}^{54}Cr+{}^{248}Cm\rightarrow{}^{302}120$

11

Langevin calculation: E*=50MeV for ³⁰²120

- Shape parametrization : Cassini ovaloid
- Dynamical variables : 3 (α , α_1 , α_4)
- Transport coefficients: Linear Response Theory (LHA)
- Free energy surface : Woods-Saxon model (Pashkevich)
- Washing out of shell effects: taken into account
- Neutron emission: Iljinov et al., (Nucl. Phys. A 543, 517 (1992))
- Rotational energy:taken into account
- Langevin equation: $\begin{bmatrix} \dot{q}_{\beta} = \mu_{\beta\nu} p_{\nu}, & \mu \equiv M^{-1} \\ \dot{p}_{\beta} = -\frac{\partial F}{\partial q_{\beta}} - \frac{1}{2} p_{\nu} p_{\eta} \frac{\partial \mu_{\nu\eta}}{\partial q_{\beta}} - \gamma_{\beta\nu} \mu_{\nu\eta} p_{\eta} + \theta_{\beta\nu} \xi_{\nu}. \\ \text{Neutron emission} \quad \Gamma_{n} = \frac{(2s_{n} + 1)m_{n}}{(\pi\hbar)^{2} \rho_{0}(U_{0})} \int_{0}^{U_{n} - B_{n}} \sigma_{in\nu}(E) \rho_{n}(U_{n} - B_{n} - E) E dE \\ \text{Width:} \quad \Delta \tau = \Delta \tau. \end{bmatrix}$

Neutron emission probability at each time step: $P_n(\Delta \tau) = \frac{\Delta \tau}{\tau} = 2 \frac{\Delta \tau}{\hbar} \Gamma_n$ 12

Results for AMD + Langevin (E*=50MeV)

Initial U*=50	0 n	1n	2 n	3n	4n
Residue	³⁰² 120	³⁰¹ 120	³⁰⁰ 120	²⁹⁹ 120	²⁹⁸ 120
<u*> (MeV)</u*>	50	40.0	32.1	23.5	17.1
P_{CNF}	7.54×10^{-4}	7.87 × 10 ⁻⁵	3.41 × 10 ⁻⁵	2.33 × 10 ⁻⁶	5.79 × 10 ⁻⁹

Hauser-Feshbach decay with multi-chance fission (MCF)

Multistep Hauser-Feshbach decay calculation

BeoH : Okumura, Kawano, SC. J. Nucl. Sci. Technol., 55,1009-1023(2018).

Results from AMD+Langevin+HF

# of emitted neutrons	0 n	1n	2 n	3n	4n
Residue	³⁰² 120	³⁰¹ 120	³⁰⁰ 120	²⁹⁹ 120	²⁹⁸ 120
<u*> (MeV)</u*>	50	39.7	32.3	23.6	17.1
$\bigcirc P_{CNF}$	7.54×10^{-4}	7.87×10^{-5}	3.41×10^{-5}	2.33×10^{-6}	5.79×10^{-9}
Bf (MeV)	3.12	3.61	4.02	4.61	6.92
(2)W _{surv}	1.87×10^{-8}	1.30×10^{-7}	1.18×10^{-6}	9.71 × 10 ⁻⁶	1.70×10^{-5}
$P_{CNF} \times W_{surv}$	1.41×10^{-11}	1.02×10^{-11}	4.02×10^{-11}	2.26×10^{-11}	9.84×10^{-14}

Number of emitted neutrons in Langevin process

Results from AMD+Langevin+HF

54Cr(324MeV) + 248Cm by AMD

b = 3.29 fm ${}^{54}\text{Cr} + {}^{248}\text{Cm} \rightarrow {}^{126}\text{Sn} + {}^{176}\text{Yb}$

 176 Yb: L=5.86 \hbar

b = 3.05 fm ${}^{54}\text{Cr} + {}^{248}\text{Cm} \rightarrow {}^{302}\text{102}$

³⁰²X: **L**=76.95 ħ

Off-center fusion seems to be strongly hindered 18

Another approach (Cb-TDHFB Cal. : Neutron density distribution), talk by S. Ebata tomorrow

E_{in}=330 MeV

Summary-1

- 1. We have integrated theoretical tools developed or prepared at Tokyo Tech. to give a description of formation of SHE including Z=120 elements: AMD, Cb-TDHFB, VUU, Langevin equation, multistep Hauser-Feshbach theory and HFBTHO
- 2. By performing calculations at the touching phase with microscopic theories like AMD or TDHFB, we can eliminate all free parameters which are present in conventional semiclassical approaches
- 3. We applied our method for the system of ⁵⁴Cr+²⁴⁸Cm at energy of hot fusion, and have verified that we can indeed describe the whole process starting from touching phase to formation of compound nuclei
- 4. It was found that the most compact shape we could produce is still more elongated compared to shape of the 2nd saddle calculated by the 3D Cassini-Woods-Saxon model 20

Summary-2

- It was found that populated composite system has excitation energy more than 40 MeV, so fission barrier is almost washed out. It leads to a very small survival probability, and it is the bottleneck of SHE formation with this reaction
- 6. Survival probability also depends strongly on spin values of the CN so they must be specified (by experiment, hopefully)
- 7. The survival probability is sensitive to excitation energy, so we must consider distribution of the excitation energy in the future work.
- 8. If cooling of populated nuclei by neutron emission works efficiently, the fission barrier revives, and there is a possibility that the survival probability may gets several orders larger
- 9. We have also started Cb-TDHFB calculation for the touching process (talk by S. Ebata)
- 10. If this kind of calculation makes sense, we would further refine our model and acquire knowledge on formation of SHE 21

Thank you very much!!

THE R. LAW CO., No.