

ASRC International Workshop "Nuclear Fission and Structure of Exotic Nuclei" Japan Atomic Energy Agency, Tokai, Japan 25 – 27 March 2019

Decay spectroscopy in the rutherfordium region (Z = 104) at SHIP

Stanislav Antalic Comenius University, Bratislava

Collaborations

GSI Darmstadt

F. P. Heßberger

S. Hofmann

S. Heinz

B. Kindler

I. Kojouharov

J. Khuyagbaatar

M. Block

B. Lommel

Comenius University (Bratislava)

- S. Antalic
- B. Andel
- P. Mošať
- A. Broniš
- Z. Kalaninová

GANIL, Caen D. Ackermann J. Piot M. Vostinar

Helmholtz Institut Mainz

M. Laatiaoui

A. Mistry

JAEA Tokai K. Nishio

SHIP separator

CLASSICAL TOOL: ALPHA -GAMMA DECAY ²⁵⁹Sg AND ²⁵⁵Rf

alpha decay of ²⁵⁹Sg

Fusion-evaporation reaction ${}^{54}Cr+{}^{206}Pb\rightarrow{}^{259}Sg+1n$ I(${}^{54}Cr^{8+}$) = 720pnA 1 week of beamtime 750 nuclei of ${}^{259}Sg$ (assuming $b_{\alpha} \approx 97\%$)

2.5.2019

alpha decay of ²⁵⁹Sg

New long-lived isomeric state in 259 Sg exists due to the 11/2-[725] and 1/2+[620] nilsson levels known in lighter N=153 isotones.

2.5.2019

New short-lived (50 \pm 17) μs isomeric state in ^{255}Rf at \approx 135 keV assigned as 5/2+[622] state similarly to lighter N=151 isotones.

N=153 and 151 isotones systematics

Significant change of the g.s. configuration for N=153 isotones from 1/2+[620] to 11/2-[725]. Short lived isomers few 10 μ s at 140 – 250 keV, not predicted by most of the theoretical models, known up to the ²⁵⁵Rf.

Possible explanation by phonon-particle interaction suggested already for ²⁴⁹Cf in 1975 - possible mixing with {9/2-[734]⊕2-}_{5/2+} [S.W. Yates et al. Phys. Rev. C 12, 442 (1975)]. JAEA Tokai, 25.3. – 27.3 2019 9

Fusion-evaporation reaction ${}^{50}\text{Ti}+{}^{207}\text{Pb} \rightarrow {}^{255}\text{Rf} + 2n$ ~1300 events

Besides its fission properties (see the talk by Pavol Mošať afternoon) we aimed at delayed coincidences of ER-CE-SF/ α

And another new isomer in ²⁵⁵Rf

Besides its fission properties (see the talk by Pavol Mošať afternoon) we aimed at delayed coincidences of ER-CE-SF/ α

We found several ten events of CE with energy up to the 900 keV; Some in coincidence with γ up to the 600 keV

with two different half-lives.

EC IN HEAVIEST NUCLEI ²⁵⁸Db AND ²⁵⁷Rf

Beta-decay studies ²⁵⁷Rf

Level systematics for Lr isotopes

Uncertain g.s. configuration for most of the Lr isotopes and completely missing data on excited levels. There are not almost any new data available in last 10 years

ANOTHER EC DECAY STUDY... ²⁵⁴Md

EC of ²⁵⁴Md to ²⁵⁴Fm

²⁵⁴Md (produced via EC of ²⁵⁴No in ⁴⁸Ca+²⁰⁸Pb) decays to ²⁵⁴Fm

Old case – observed in 1970 by Fields et al Only very basic data are available

CE with high energy γ transitions up to 700 keV and Fm X rays Populated state at 1200 – 1400 keV (considering bind. energy)

2.5.2019

EC of ²⁵⁴Md to ²⁵⁴Fm

The β - decay of ^{254m}Es involves a transitions between low-spin states. Do we expect something similar for EC of ²⁵⁴Md is higher?

2.5.2019

55% of al EC transitions goes well <u>above</u> known 2+ and 3+ states at \approx 700 keV

 \Rightarrow There are higher spin states populated than expected and thus also initial in ²⁵⁴Md

It seems, the ambiguity for available single particle levels is critical issue again

Conclusion

 Besides α-decay studies the EC might provide interesting data (using delayed coincidences with CE+X-ray coincidences); see e.g. ²⁵⁸Db, ²⁵⁷Rf, ^{253,254}Md...

It's tricky, but possible.

- Level systematics above fermium remains very uncertain especially for isotopic chains ⇒ it's really difficult to predict and explain decay characteristics of heaviest isotopes.
- There is still lot of work for both theory and experiment in the region of heaviest nuclei.

Thank you