Abstract: Interlayer space of the 2:1 clay minerals is negatively charged by isomorphic substitution (e.g. Si$^{4+}$ with Al$^{3+}$) in the sheet structure. Cs$^{+}$ can be strongly adsorbed in this space as a dehydrated form. In a natural soil environment, the specific adsorption of Cs$^{+}$ may be inhibited by either organic matter (OM) coverage on the surface of 2:1 clay minerals or hydroxy-Al polymer (h-Alp) interlayering in the interlayer space. We elucidated these inhibitory effects for Japanese forest soils with a special attention to the relative contribution of these factors to the overall inhibition. Soil particles with a diameter of <20 mm were fractionated from the soils collected every 3 cm from 0 to 30 cm in a soil profile. The <20 mm particles were treated with H$_2$O$_2$ to remove OM. They were subsequently treated with hot sodium citrate to remove h-Alp in the interlayer space. Adsorption experiment revealed that the ability to retain Cs$^{+}$ was largely increased after removing OM for the particle from 0-3 cm and 3-6 cm soil depths while not largely for those from lower depths. By contrast, the particles from lower depths showed a drastic increase in the retention ability after the subsequent removing of h-Alp. In the end, the <20 mm particles after removing both OM and h-Alp showed similarly high ability to retain Cs$^{+}$. These results indicate that although both OM and h-Alp can largely reduce the Cs$^{+}$ adsorption on 2:1 clay minerals in forest soils, their relative contribution to the overall inhibition is different according to soil conditions.

<Contact>
Naofumi Kozai (81-3518)
Advanced Science Research Center