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Asymmetric structure of germanene
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Abstract )

Recently, in expectation of post-graphene, one has
tried to fabricate novel atomic sheets that consist
of heavier elements with keeping the honeycomb
framework. In this study, we investigated the atomic
configuration of "germanene”, germanium version of
graphene, using total-reflection high-energy positron
diffraction (TRHEPD) technique. As a result, contrary
to the previous results, we found that germanene has
an asymmetric structure.

This work has been done in collaboration with
Institute for Solid State Physics, The University of
Tokyo (Dr.]. Matsuda and Dr.B. Feng) and Institute of
Materials Structure Science, High Energy Accelerator
Research Organization (KEK) (Dr.I. Mochizuki and
Dr.T. Hyodo). The result was published in 2D Materials,
Institute of Physics (IOP) publishing, on 8th September
2016.

1 .Background )

Nowadays, graphene, a honeycomb structure of
carbon, has attracted increasing attention. Graphene
is extremely thin (one atomic layer) and has many
promising features such as very high carrier mobility
and robust mechanical property. Very recently, silicon
and germanium counterparts of graphene, which
are respectively called "silicene" and "germanene’,
have been synthesized and investigated for post-
graphene. Due to the strong spin-orbit coupling in
the relatively heavier elements and the expected
buckled configurations for the sp® bonding character,
silicene and germanene are expected to possess more
fascinating properties such as topological insulator [1].

In a sense, graphene exists in ancient times because
graphite corresponds to a stack of graphene. For
silicene and germanene, however, there are no parent
materials like graphite for graphene because silicon
and germanium form only the diamond structure.
Hence, it was merely a theoretical subject [2]. In 2012,
silicene has been successfully fabricated on the surface
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of silver crystal and ZrB, thin film [3-5]. Its discovery
opens a new field of atomic sheets. To date, germanene
has been also fabricated on various substrates [6,7].
However, the atomic configurations of germenene had
yet to be determined experimentally.

Because silicene and germanene have the thickness
of only one atomic layer as well as graphene, there
needs to be extremely high surface-sensitivity to
determine the atomic configurations. However,
conventional methods see not only the atomic sheet
but also the underlying layer of the substrate.
Thus, it is difficult to accurately determine atomic
configurations of the atomic sheets without any effect
from the substrate. We developed total-reflection
high-energy positron diffraction (TRHEPD) technique
having extremely high-surface sensitivity [8] and
experimentally verified the atomic configurations of
graphene and silicene on various substrates [9,10]. In
this study, we focused on germanene on an aluminum
substrate, which was just synthesized [7].

A uniform large-area germanene covers an aluminum
substrate [7]. Eight Ge atoms are included in the unit
cell (Fig. 1). In the previous studies, it was suggested
that two Ge atoms in the unit cell are shifted upwards,
leading to a symmetric structure (right of Fig. 1).
However, the detailed atomic positions remained
unknown. Thus, we tried to experimentally determine
the atomic positrons using the TRHEPD technique.
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(left) Atomic configuration of germanene on an aluminum substrate determined in this study and (right) the previous
structure model. Yellow and orange circles denote the Ge atoms. Gray ones are the Al atoms. To highlight the
symmetry of the atomic configuration, the Ge atoms shifted upwards are denoted by large yellow circles.
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For TRHEPD, the positron beam with an energy of
10 keV is incident on a sample surface at grazing angle,
and the diffraction pattern is observed on a screen
(Fig. 2). The spot intensities in the diffraction pattern
contain information about atomic configurations of the
sample. Therefore, by means of the intensity analysis,
we are able to determine the atomic positions of the
sample. Since the positron, antiparticle of the electron,
has a positive charge, opposite to that of the electron,
it feels an intense repulsive force from nuclei of a point
charge. Owing to the repulsive force, the positron
beam cannot penetrate deeper region of the sample.
Especially, the total reflection takes place at low
glancing angles. Under the total reflection condition,
the diffraction intensity contains information about
only the outermost layer of the material. Therefore,
the TRHEPD method enables us to perform accurate
structure determinations without any effect from the
deeper bulk region. In this study, we fabricated the
germanene on an aluminum substrate after the recipe
[7] and conducted TRHEPD experiments [11].

As a result, we found that the germanene on the
aluminum substrate has an asymmetric structure,
contrary to the symmetric one of the previous report
[7]. Assuming the symmetric structure as reported
in the previous studies (right of Fig. 1), the intensity
distributions of positrons scattered to left and right
should show the same shape (blue lines in Fig. 3).
However, the intensity distributions measured in this
study show the different shapes (open circles in Fig.
3). From the intensity analysis based on the dynamical
diffraction theory (black lines in Fig. 3), it was found
that one Ge atom in the unit cell is shifted upwards,
giving rise to an asymmetric structure (left of Fig. 1).
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Experimental setup of TRHEPD. The positron beam with an energy of
10 keV is incident on the sample surface and the diffraction pattern is
observed on a screen.
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1 Diffraction intensity of positrons for germanene on an aluminum substrate.
Top and bottom curves show the intensity distributions of positrons
1 scattered to left and right, respectively. Open circles indicate the
experiment. Black and blue lines are the calculations using the asymmetric

(left of Fig. 1) and symmetric (right of Fig. 1) structures of germanene,
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