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Spinmotive force

Jun’ichi Ieda and Sadamichi Maekawa

1.1 Introduction

This chapter overviews “spinmotive force” (SMF), which is an emerging concept that
is responsible for generating spin current and electric voltage in magnetic conductors.
The SMF is mediated by the exchange interaction between conduction-electron spin
and magnetization and thus has the same roots as spin-transfer torque (STT) [1,2] (i.e.,
they are two sides of a coin). Whereas STT is responsible for the angular-momentum-
transfer between spin current and magnetization, SMF enables the energy-transfer
in the interacting system. Therefore, SMF is expected to give rise to an important
contribution to energy management in future spintronics applications.

Motivated by the experimental demonstration of the STT driving a domain wall
(DW) in a ferromagnetic nanowire in the early 2000’s [3], the implementation of SMF
in a similar system and its magnetic memory device applications were proposed in
2006 [4]. Soon after, the general aspect of the SMF was clarified in terms of a concept
of the accumulation of Berry phase [5] by pointing out that SMF can be regarded as
a generalization of Faraday’s law of induction to include the electron’s spin degree of
freedom [6]. Since then, a series of experimental demonstrations [7–15] and theoretical
investigations [16–46] of the SMF effects have appeared.

Below we list some striking features of the SMF:

• In contrast to the inductive electromotive force (EMF) where the time variation
of magnetic flux is required, static magnetic fields can generate electric voltages.

• As a new source for an electric voltage the conversion rate is given by fundamental
constants apart from the spin polarization of ferromagnetic materials, enabling
efficient energy conversion.

• The SMF provides for a powerful tool for exploring the dynamics and the nature
of magnetic textures such as domain walls, magnetic vortices, and skyrmions.

• Active devices that use this effect can operate with zero stand-by power and their
efficient power conversion between the magnetic and electric systems provides a
unique functionality in magnetic nanostructures.

As an introduction to the SMF, we select several topics ranging from the basic
concepts to recent experimental progress. Some potential applications of the SMF will
also be discussed from a theoretical viewpoint.
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1.2 Description of spinmotive force

This section describes the SMF from various viewpoints. After some retrospective
remarks, we start with a simple argument based on the conservation laws to deduce
the existence of the SMF. To this end and for simplicity, we neglect in this section
all the dissipation process (except in Fig. 1.2). Next we explain the connection to the
Berry phase. Finally, we briefly introduce the spin electromagnetic fields and describe
it with a numerical approach.

1.2.1 Historical remarks

The earlier work related to the SMF (before the discovery of the STT effect) occurred
repeatedly but quite independently in different contexts. In 1977, Korenmann et al. [47]
constructed a theory of the spin fluctuation in itinerant ferromagnets in which they
first wrote down the widely quoted expressions for spin electromagnetic fields. These
fields, however, played less important roles in their formalism and they did not identify
the SMF. A decade later, Volovik [48] studied a paradox in the linear momentum of
the coherent magnetization motion that couples to the incoherent fermionic excitations
and re-derived the same spin electromagnetic fields implicated to restore conservation
of linear momentum1. Technically, however, no measurable SMF was expected because
the only internal magnetic energy (exchange stiffness) was incorporated as the source
of total energy. Berger [49] was the first to insist that a precessing DW could generate
an electric voltage, regarding it as a ferromagnetic analogue of the AC Josephson effect.
Stern [5] first identified the possibility of such a spin version of the EMF in terms of
the Berry phase in a nonmagnetic ring with a nonuniform magnetic field where the
net electrical voltage vanishes after spin averaging. Thus, materials with a finite spin
polarization P are required to convert the pure spin force to a measurable electrical
voltage.

1.2.2 Conservation laws

An instructive example involving the SMF is a single DW in a conducting ferromag-
netic nanowire with only uniaxial anisotropy. When we apply a magnetic field H along
the easy axis of the wire a positive or negative Zeeman energy shift arises for each
of the magnetic domains separated by the DW. Next, we consider that conduction
electrons couple to the magnetic system, thereby allowing the exchange of energy and
angular momentum. In the presence of a magnetic field, the total Zeeman energy of
the nanowire depends on the DW position, and the magnetic energy changes when the
DW moves with the velocity vDW. The rate of change in magnetic energy per unit area
of wire cross section is given by −2µ0MsHvDW, where µ0 is the magnetic constant
and Ms is the saturation magnetization. Here we employ STT to drive a DW2. Due to
conservation of angular momentum, the rate of change in angular momentum carried
by the spin polarized current and the rate of change of the localized moment must
balance leading to a relation between the DW velocity vDW and the applied current
density J as, vDW = −gµBPJ/(2eMs), where g is the Landé g factor, µB is the Bohr

1Note that the STT term already appeared in Eq. (10) of Ref. [48].
2Without energy dissipation, the DWs do not move along the wire due to a relaxation process.
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magneton, e > 0 is the elementary charge and the spin polarization P is defined by
the spin-dependent conductivity σs (s =↑, ↓) as P = (σ↑ − σ↓)/(σ↑ + σ↓). This is the
DW velocity due to the STT effect [3]. Conservation of energy requires the rate of the
magnetic energy change is balanced by a work done on the current J (per unit time
and area) as −2µ0MsHvDW + JV = 0, where V is the induced electric voltage. Using
the STT current-velocity relation for vDW we obtain

V = −PgµB

e
µ0H. (1.1)

The sign of the SMF, which ultimately depends on the definition of a measurement
setup, is specified by a spin version of Lenz’s law. In other words, the polarity of the
induced voltage is determined by the current it must drive to oppose to the applied
current and thereby restore the original DW position via the STT effect. For the field-
induced DW the voltage drop develops along the direction of DW motion3. Equation
(1.1) gives a simple conversion rate between the input field and output voltage as
' P × 100 µV/T.

The SMF associated with field-driven DW dynamics was measured for the first
time by Yang et al. who used a modulated-drive-field technique in a 500-nm-wide,
20-nm-thick, and 35-µm-long permalloy nanowire [7, 24]. By using Eq. (1.1), they de-
termined the spin polarization of the permalloy sample to be P ∼ 0.85. Reference [50]
further discusses the SMF induced by DW motion.

1.2.3 Time dependent spin Berry phase

To obtain Eq. (1.1), we only assume conservation of angular momentum and energy
between the conduction electrons and the magnetization. We now show that Eq. (1.1)
is identical to the general expression of the SMF [6],

V =
P~
e

dγs
dt

, (1.2)

where ~ is the Planck’s constant divided by 2π and γs is the so-called Berry phase
associated with the spin degree of freedom of an electron.

The Berry phase reflects the geometric aspects of the system in general, which
plays an important role in the understanding of phenomena in recent spintronics,
such as the quantum spin Hall effect and the anomalous Hall effect [51]. Here it is
related to the solid angle Ω subtended by the trajectory of the spin direction in spin
space as γs = −Ω/2 [52]. To calculate the SMF, the time variation of the solid angle
is needed and, for a DW under a uniform magnetic field H, this is given by twice
the Larmor precession frequency: dΩ/dt = 2γH where γ is the gyromagnetic ratio.
By using γ = gµBµ0/~, one can show that Eq. (1.1) is identical to Eq. (1.2). This
expression is a generalization of Faraday’s law of induction since the Berry phase
associated with the charge degree of freedom (the Aharonov–Bohm phase) is given
by γe = (−e/~)Φ where Φ is the magnetic flux and Eq. (1.2) with γe reproduces the
conventional expression.

3For P < 0 the voltage polarity reverses because the STT DW velocity changes the sign.
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Fig. 1.1 Schematic illustration of the permalloy comb sample used in Ref. [9].

Another simple example where the spin Berry phase can be obtained analytically
is a system of two precessing macro spins. Consider a single ferromagnet film with two
uniform magnetic domains that precess about the applied field H with the frequency
ω but different corn angles, θi (i = 1, 2). The magnetization direction between two
domains continuously changes as in a DW. In this case, the time derivative of the spin
Berry phase acquired by a conduction electron traversing the film is given by

V =
P~ω
2e

(cos θ2 − cos θ1). (1.3)

If θ1 6= θ2 a voltage appears between two contacts attached to each side of the film.
This situation is experimentally realized in a comb-shaped permalloy thin film, as

shown in Fig. 1.1 [9]. Due to the shape magnetic anisotropy, the wide region (pad) and
narrow region (wire) of the single film sample have different resonance conditions for a
fixed applied microwave frequency ω. This fact enables the selective excitation of the
ferromagnetic resonance (FMR) of the pad or wire. For example, if the pad resonance
condition is fulfilled, the cone angle of the pad is finite, θ1 = θpad 6= 0, and that of the
wire is θ2 = θwire = 0. For θpad � 1, we expand Eq. (1.3) to obtain

V ' P~ω
4e

θ2pad, (1.4)

which is proportional to the applied microwave power. On the other hand, when the
wire is excited resonantly the voltage sign should be reversed. These predictions are
confirmed experimentally and numerically [9], demonstrating the continuous genera-
tion of SMF that can convert ac magnetic fields to dc electrical voltages.

Equation (1.2) is also evaluated for a sliding motion of a chiral soliton lattice [35].

1.2.4 Spin electromagnetic fields

As we noted above, the SMF can be regarded as a spin version of Faraday’s law of
induction. Thus one may expect a local expression for a spin version of electromagnetic
fields. Generally, appearance of an EMF requires a nonconservative force acting on
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electrons; a force that cannot be described as a spatial gradient of any potentials. An
EMF is given by

V =
1

−e

∮
f · dx, (1.5)

where the integral
∮
dx is taken along an electric circuit through which the electron

passes, and f is the force that acts on the electron. The right-hand side of Eq. (1.5)
corresponds to the total energy supplied to the electron (divided by −e) while the
electron travels and conservative forces do not contribute to this quantity.

In electromagnetism, the time-derivative of a U(1) vector potential gives rise to a
nonconservative electric field, resulting in an inductive EMF. This EMF is described by
Faraday’s law of induction (i.e., the time derivative of a magnetic flux) and its energy
source is the applied electromagnetic fields E and B, which couple to the electrons
via the Lorentz force fe = −e(E + v ×B), where v is the electron velocity.

Conversely, the spin degree of freedom of the electron in a ferromagnet couples to
the magnetization via the exchange interaction. Through this interaction the electron
can receive magnetic energy from the magnetization, which can be an additional source
for the EMF (1.5). The exchange interaction with the magnetization acts as a SU(2)
potential for the electrons, giving rise to a spin-dependent nonconservative force f±
acting on the electrons,

f± = −e [±E + v × (±B)] , (1.6)

where + (−) corresponds to the majority (minority) electrons, and the so-called spin
electric and spin magnetic fields, E and B, are given by

Ei =
~
2e

m ·
(
∂m

∂t
× ∂m

∂xi

)
, Bi = −εijk

~
4e

m ·
(
∂m

∂xj
× ∂m

∂xk

)
, (1.7)

where m denotes the unit vector of the magnetization direction, εijk is the Levi–Civita
symbol, and the dot and cross products are taken over the vector components of m.
We will see the derivation of Eqs. (1.6) and (1.7) in the next section.4

This spin electric field E is nonzero when magnetization depends on both time and
space. Such conditions are fulfilled for the field-induced DW motion and the spatially
modulated FMR as seen in the previous subsections. By integrating E for the particular
cases we recover Eqs. (1.1) and (1.3) respectively.

The spin magnetic field B is produced by a noncoplanar magnetization configura-
tion. The Lorentz-type force −e[v × (±B)] gives rise to the transverse conductivity.
This effect is called the anomalous Hall effect due to the spin chirality [53–56].

The forces on the majority spin and minority spin are opposite and the net force
acting on electrons are averaged over the spin bands. This implies that a force exerted
on electrons is associated with the spin polarization P of the ferromagnet5 as

fnc = −P~
2

m ·
(
∂m

∂t
×∇m

)
. (1.8)

This is the nonconservative force exerted on electrons from dynamical magnetization.

4Note that the use of the unit vector n ≡ −m instead of the magnetization vector m reverses the
overall signs of Eqs. (1.7) as adopted in some publications [27,37].

5More accurate treatments involving the spin diffusion with f± are given in Refs. [19, 20,22–27].
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1.2.5 Numerical approach

We see that the SMF reflects the local magnetization texture. In reality, the magnetiza-
tion dynamics show complex spatiotemporal profiles that depend on sample geometry,
applied magnetic fields, and other conditions. Tracing in detail the time evolution
of the magnetization structure requires a numerical analysis using the finite element
method. The numerical analysis of the magnetization dynamics is referred to as micro-
magnetics. For this purpose we use the open-access cords such as the object oriented
micromagnetic framework (OOMMF) [57].

Numerical methods for evaluating SMFs was first developed by Ohe et al. [21],
who applied their method to the system of a gyrating magnetic vortex core. The
procedure is as follows: First, based on information of the magnetization obtained by
micromagnetics, the spin-electric field E is calculated at every time step. In electron
equilibrium, the nonconservative force derived above is balanced by a conservative
force [a U(1) electric field] Ec = −∇V [i.e., fnc + (−e)Ec = 0]. Finally, using this
relation the Poisson equation

∆V = −1

e
∇fnc, (1.9)

is numerically solved under certain boundary conditions, which enables a quantitative
evaluation of the SMF in a given ferromagnetic nanostructure.

Figure 1.2 shows an example of numerical simulations of DW motion and the
associated voltage profile in a permalloy nanowire. Here the moving DW exhibits a
complex two-dimensional magnetization configuration [Fig.1.2(a)] and the associated
potential distribution changes significantly around the DW [Fig. 1.2(b)]. By monitoring
the potential difference between the electrodes attached to any two positions of the
sample, the voltage signal due to SMF can be detected in real time. For the simulation
result shown in Fig. 1.2, the time-averaged voltage drop is calculated to be ∼ 0.9 µV,
which is consistent with Eq. (1.1) with µ0H = 14 mT and P = 0.6. A more detailed
numerical analysis of the SMF generated by DW motion is found in Ref. [38].

(a)

(b)

mx

x

y

+2.5 μV

-2.5 μV

+1

-1

V

H

Fig. 1.2 Numerical results for field-induced DW motion in a permalloy nanowire (1000×100

nm2). (a) Snapshot of magnetization profile (mx component displayed in gray scale). Solid

arrows represent local magnetization directions. (b) The electric potential profile associated

with panel (a). Here we use µ0H = 14 mT, µ0Ms = 1 T, P = 0.6, the Gilbert damping

constant is 0.01, and the exchange stiffness is 1.3× 10−11 J/m.
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1.3 Theory of spinmotive force

In this section, we derive the spin electromagnetic fields (1.7) and their extensions.
There are several practically equivalent ways to do this, for example, in terms of the
Berry curvatures [6,24,36], the Onsager reciprocal relations [17,19,44], and the linear
response to magnetization dynamics [27,37]. In this section, to clarify the origin of the
SMF, we introduce an approach based on the equation of motion [28].

1.3.1 s–d model

We begin with the Hamiltonian of the s–d model6 for the conduction electrons in a
ferromagnetic material,

H =
p2

2me
+ Jexσ ·m, (1.10)

where p and me are the linear momentum operator and electron mass, respectively.
The second term represents the exchange interaction, with Jex(> 0) being the ex-
change coupling energy, σ being the Pauli matrices indicating the electron-spin opera-
tor defined in the laboratory frame, and m being the unit vector of the magnetization
direction. The magnetization generally depends on time and space.

By the correspondence principle, a quantum-mechanical “force” operator acting on
the conduction electrons is given by the Heisenberg equation of motion

f =
me

i~
[v,H] +mev̇, (1.11)

where v = [r,H]/(i~) = p/me is the velocity operator and the dot denotes the partial
derivative with respect to time, v̇ ≡ ∂v/∂t. Next, the expectation value of the force
operator is determined by that of the spin operator 〈σ〉 and the magnetization as

〈f〉 = −Jex〈σ〉 · ∇m. (1.12)

For uniform magnetization (∇m = 0), the force acting on the electron spin vanishes,
so no SMF is generated in the system described by the Hamiltonian (1.10).

Let us now consider the case in which nonuniform magnetization is in motion. The
dynamics of m is described by the Landau–Lifshitz–Gilbert (LLG) equation:

ṁ = −γm×Heff + αm× ṁ, (1.13)

where α is the Gilbert damping constant and the effective magnetic field is defined as

Heff = − 1

µ0Ms

δF [m]

δm
, (1.14)

where F [m] is the free energy of the ferromagnet, which comprises the exchange,
anisotropy, dipole, and Zeeman energies. By solving the LLG equation, Eq. (1.12) is
evaluated at each point and time.

6An approach based on the Stoner model was developed in Ref. [6] and in the 1st ed. of this
chapter.
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1.3.2 Adiabatic contribution

Let us calculate the expectation value of the conduction-electron spin. To this end,
by a local gauge transformation in the spin space, we rotate the spin quantization
axis, which is originally the z axis of the laboratory frame, ẑ, so that it aligns with
the magnetization m. The direction m in the laboratory frame is specified by the
Euler angles (θ, ϕ) as m = t(sin θ cosϕ, sin θ sinϕ, cos θ). By using a unitary matrix

U ≡ ei
θ
2σyei

ϕ
2 σz , the Hamiltonian (1.10) is transformed as follows,

H′ =
1

2me
(p+A)2 + Jexσz +A0, (1.15)

where the SU(2) gauge potentials (connection 1-forms)

A ≡ ~
i
U∇U† =

~
2
(sin θ∇ϕσx −∇θσy − cos θ∇ϕσz), (1.16)

A0 ≡ ~
i
UU̇† =

~
2
(sin θϕ̇σx − θ̇σy − cos θϕ̇σz) (1.17)

arise for nonuniform and time-varying magnetization, respectively. Compared with
the original Hamiltonian (1.10), the exchange interaction becomes diagonal in the new
local frame spanned by x̂′ = t(cos θ cosϕ, cos θ sinϕ,− sin θ), ŷ′ = t(− sinϕ, cosϕ, 0),
and ẑ′ = m whereas, to compensate, A and A0 have off-diagonal components.7

To proceed, it is convenient to introduce the unitary matrix UO(3) ≡ (x̂′, ŷ′, ẑ′)†,

which changes the basis from {x̂, ŷ, ẑ} to {x̂′, ŷ′, ẑ′}. One can show that U(σ ·a)U† =
σ ·

(
UO(3)a

)
for a three-dimensional vector a. Collecting the spin-dependent terms of

the new Hamiltonian (1.15) we obtain

Hex = Jexσ ·

{[
1− ~

2Jex

(
cos θϕ̇+

1

2
(v · cos θ∇ϕ+ cos θ∇ϕ · v)

)]
m′

− ~
2Jex

[
(m× ṁ)

′
+

1

2
[v · (m×∇m)′ + (m×∇m)′ · v]

]}
, (1.18)

where m′ = UO(3)m = t(0, 0, 1) and (m× ṁ)
′
= UO(3) (m× ṁ) = t(− sin θϕ̇, θ̇, 0)

denotes the vectors represented in the rotated frame of reference. Equation (1.18)
shows that the conduction spin interacts not only with the longitudinal field parallel
to the instantaneous magnetization direction m′ but with the transverse fields being
proportional to (m× ṁ)

′
and (m×∇m)′.

Now we assume smooth and slow variations of the magnetization satisfying |ṁ| �
~−1Jex and |(vF ·∇)m| � ~−1Jex, with vF being the Fermi velocity of the conduction
electrons. These adiabatic conditions allow the systematic expansion with respect to
Jex of the problem described by Hamiltonian (1.18). Taking the leading contributions
is referred to as the adiabatic approximation.

7Such gauge fields associated with the coordinate transformation are called pure gauges and do
not produce any new forces by themselves [58].
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Fig. 1.3 The normalized expectation value of the spin, s±, and the magnetization unit vector

m. When m depends on time or when the electron moves in the spatially nonuniform m,

the directions s± deviate from ∓m by δs±, as indicated by the small arrows.

The dynamics of conduction-electron spin obeys the Heisenberg equation

d

dt
σ =

1

i~
[σ,Hex], (1.19)

and the instantaneous one-electron eigenstates with momentum k, |k±〉 can be con-
structed, where + (−) denotes the majority (minority) spin state. The expectation
value of the spin operator up to O(J−1

ex ) is then given by (in the original basis)

s± ≡ 〈k ± |σ|k±〉 ' ±
[
−m+

~
2Jex

(m× ṁ) +
~

2Jex
[m× (vk · ∇)m]

]
. (1.20)

Equation (1.20) indicates that, when the magnetization dynamics is induced (ṁ 6= 0)
or when the electron flows in a nonuniform magnetization texture (vk · ∇)m 6= 0, the
direction of the spin expectation value slightly deviates from the magnetization axis
(∓m), giving rise to the misalignment of the conduction-electron spin δs±, as shown
in Fig. 1.3. Substituting Eq. (1.20) into Eq. (1.12), we obtain the spin force as

f± ≡ 〈k ± |f |k±〉 = ∓e(E + vk ×B), (1.21)

where the spin electric and magnetic fields are given by

E =
~
2e

m · (ṁ×∇m) , (1.22)

B =
~
2e


m ·

(
∂m
∂z × ∂m

∂y

)
m ·

(
∂m
∂x × ∂m

∂z

)
m ·

(
∂m
∂y × ∂m

∂x

)
 . (1.23)

These fields are the adiabatic contribution to the spin electromagnetic fields.
Note that omitting the transverse fields in Eq. (1.18) results in no misalignment

δs± = 0 and the null result8. The transverse parts of the spin gauge fields represent the
generators of translation with respect to the magnetization texture,9 and the resulting
misalignment is the key ingredient in the process transferring both angular momentum
(STT)10 and energy (SMF) between magnetization and conduction spin.

8The role of the transverse fields on the local band theory was studied in Ref. [47].
9The detailed arguments are found in the 1st ed. of this chapter.

10The derivation of the STT term along with the present scenario is explained in Ref. [59].
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1.3.3 Nonadiabatic contribution

Next we extend the spin electric field (1.22) to include the nonadiabatic correction due
to spin-flip process. Duine [17] and Tserkovnyak and Mecklenburg [19] introduced such
a nonadiabatic contribution on the basis of the Onsager reciprocal relation between
the dynamics of magnetization and the conduction electrons as follows:

E = β
~
2e

ṁ · ∇m, (1.24)

where β is a dimensionless phenomenological parameter. Shibata and Kohno [27] ob-
tained the same expression from a linear response approach by carefully accounting
for spin-relaxation effects.

Here we derive the above expression by extending the preceding argument. In the
derivation of the spin-dependent force (1.21), we assumed that electron spin aligns the
instantaneous field direction adiabatically, resulting in the expectation value

s± = ∓m+ δs±, (1.25)

where the second term on the right-hand side represents the deviation from ∓m. In
general, δs± can be decomposed into two directions perpendicular to m,

δs± = X±m× dm

dt
+ Y±

dm

dt
, (1.26)

where X± and Y± are the spin-dependent constants and d/dt = ∂/∂t + v · ∇. The
equation of motion for the electron-spin vector (1.25) is given by

d

dt
s± = −2Jex

~
s± ×m− δs±

τsf
, (1.27)

where τsf is the spin-flip relaxation time. The first term on the right-hand side of
Eq. (1.27) is the Larmor precession of the electron spin around the magnetization axis.
Conversely, the second term represents the spin relaxation describing the nonadiabatic
dynamics of the electron spin. Substituting Eqs. (1.25) and (1.26) into Eq. (1.27), we
obtain the following explicit expression for X± and Y±:

X± = ± ~
2Jex

, Y± = ± ~
2Jex

~
2Jexτsf

. (1.28)

In the derivation of Eq. (1.28), the term ∂δm±/∂t is discarded because it gives a
higher order term compared to the other terms. X± is O(J−1

ex ) whereas Y± is O(J−2
ex ).

Substituting the obtained spin expectation value into Eq. (1.12), the spin electric field
is given by

E =
~
2e

(m× ṁ) · ∇m+
~

2Jexτsf

~
2e

ṁ · ∇m. (1.29)

The first term on the right-hand side of Eq. (1.29), which is equivalent to Eq. (1.22),
comes from the adiabatic component X±. The second term in Eq. (1.29), which goes
to zero in the adiabatic limit τsf/(~J−1

ex ) → ∞, comes from the nonadiabaticity in the
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electron-spin dynamics and also depends on the spatial and temporal derivatives of
the magnetization. By comparing Eqs. (1.24) and (1.29), we identify

β =
~

2Jexτsf
. (1.30)

When the spatial and temporal changes in the magnetization are parallel (i.e., ṁ ×
∇m = 0), the nonadiabatic SMF becomes the leading term and the adiabatic SMF
vanishes. Such a condition is fulfilled, for example, for a sliding DW motion in external
fields less than the Walker breakdown field [17].

Experimentally, it is rather challenging to observe this nonadiabatic contribution to
the SMF because the nonadiabatic parameter (1.30) is quite small, typically β ∼ 10−2.
Currently, no measurement has been reported of this effect. One interesting proposal
for its detection is to use the collective motion of a magnetic bubble array [41] to
geometrically separate the adiabatic and nonadiabatic SMF and accumulate the SMF
output from each bubble motion. A similar mechanism is anticipated in a lattice of
skyrmions [40].

1.3.4 Spin-orbit coupling

In the previous subsections, we derived adiabatic and nonadiabatic contributions to
the spin electric field, which depend on both ṁ and ∇m. Therefore, magnetic textures
such as a DW or magnetic vortex are required. Note, however, that in a system with
Rashba spin-orbit (SO) coupling [60] there exist additional spin electric fields even for
uniform magnetization [32,37,39,44].

In the nonrelativistic limit up to the order of 1/c2 (where c is the speed of light),
the Hamiltonian of a conduction electron in a ferromagnetic conductor is

H =
p2

2me
+ Jexσ ·m− eηso

~
σ · (p×E) . (1.31)

In addition to the exchange interaction between electron spin and the magnetization,
we introduce a SO interaction in the third term, with the SO coupling parameter
ηso = ~2/(4m2

ec
2) for the free-electron model (in real materials ηso can be enhanced

by several orders of magnitude).
The velocity operator v = [r,H]/(i~) is now given by

v =
p

me
+

eηso
~

σ ×E, (1.32)

where the second term in the last line is the so-called anomalous velocity. The force f
acting on the electron is given by Eq. (1.11), which is now extended as

f = −Jexσ · ∇m+
emeηso

~
σ × Ė +

emeηsoJex
~

[σ ×E,σ ·m]. (1.33)

The first term reproduces Eq. (1.11) whereas the second term originates from the time-
derivative of the anomalous velocity. The third term is due to the noncommutative
nature of the anomalous velocity and the exchange coupling. The expectation value of
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the force f± ≡ 〈k ± |f |k±〉 is determined by the electron-spin dynamics [Eq. (1.27)].
Here we assume the condition Jex � eηso|k||E|, where the electron spin follows mostly
the direction of ∓m due to the strong exchange coupling, whereas the SO interaction
provides spin relaxation through the nonadiabatic spin-flip process.

The misalignment δs± is again essential for f±. One can easily see that the values
〈k ± |σ · ∇m|k±〉 and 〈k ± |[σ × E,σ · m]|k±〉 appearing in the force are zero if
s± = ∓m. Substituting Eq. (1.26) with Eq. (1.28) into the expectation value of
Eq. (1.33), we obtain f± = ∓eE, where the spin electric field reads

E =
~
2e

(m× ṁ+ βṁ) · ∇m+
meηso

~
∂

∂t
(m×E) + β

meηso
~

(m× ṁ)×E. (1.34)

Here we use Eq. (1.30) and the velocity-dependent terms are discarded for simplicity
by considering an open circuit condition where the ensemble average of 〈k ± |v|k±〉
is zero. The first term in Eq. (1.34) comes purely from the exchange coupling and
depends on ∇m, requiring nonuniform magnetization texture for the appearance of
the SMFs as shown in the previous subsections. Conversely, the last two terms in
Eq. (1.34), which contain the SO parameter ηso, do not involve ∇m.

Kim et al. [32] showed that the spin electric field is proportional to ṁ × E and
the resulting AC electric voltage can be produced in Rashba SO coupled systems,
where the electric field E due to the inversion asymmetry is assumed to be static.
This prediction was confirmed by FMR experiments in a ferromagnetic semiconductor
(Ga,Mn)As [14]. Later, this contribution was found to be a part of a spin electric field
proportional to ∂(m × E)/∂t [39], i.e., the third term in Eq. (1.34); an additional
spin electric field proportional to m × Ė appears. Note that, since the latter SMF
can be induced with static and uniform magnetization, one can investigate the SMF
electrically in detail with no disturbance arising from the inductive voltage, in contrast
with the other SMF that lie at the origin of ṁ. In addition, the SMF is tuned via the
electric fields with variable frequencies [39, 45], whereas the time-dependence of the
other SMFs is restricted by the characteristics of the magnetization dynamics. The
fourth term reflects the nonadiabatic dynamics of electron spin and was derived in
Rashba SO-coupled systems by elaborating the diagrammatic calculation by Tatara
et al. [37]. The Onsager reciprocal relations between the charge current induced by
Eq. (1.34) and the STT effects are discussed by Hals and Brataas [44]. Shibata and
Kohno [23] also studied the SO-coupled ferromagnetic system (1.31) and predicted
that the inverse Hall effect arises from the first term of Eq. (1.34).

1.3.5 Antiferromagnet

So far we have discussed the SMF only in ferromagnets. In this subsection, we consider
a possibility of the SMF being generated in antiferromagnets (AFMs).

AFM spintronics is attracting more attention because of its potential to become a
key player in technological applications where AFMs play an active role [61]. This mo-
tivates the demand for reliable methods to observe dynamical AFM textures that are
often difficult to see directly by the conventional methods used in ferromagnet-based
structures because of their small magnetization. SMFs, if present, would enable the
detection of AFM dynamics by electrical means. Systems involving antiferromagnetic
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resonance (AFMR) are good candidates for pursuing larger SMFs [9, 32] because the
resonance frequencies are typically as high as terahertz.

Cheng and Niu [36] formulated a theory of electron dynamics in two-sublattice
AFMs. One of their predictions is that no SMF appears unless a nonequilibrium spin
polarization is introduced externally (e.g., by injecting spin into the AFM from an at-
tached ferromagnet). This result is supported by the numerical research of Okabayashi
and Morinari [42]. These two studies focus on the adiabatic contribution to SMF with-
out SO couplings, which is an odd function of m and its sublattice average cancels
out if the sublattice magnetizations are perfectly collinear.

In contrast, Ref. [46] shows that the nonadiabatic contribution to the SMF, which
is even in m, survives and becomes a leading contribution in textured AFMs. For
example, the electric voltage induced by AFM DW motion is given by

V = −~Pβ

e∆
vDW, (1.35)

where ∆ is the DW width, and vDW is the DW velocity. In addtion, the SO coupling
contributions to the SMF remain. It is predicted that ac voltages are predicted to
arise when the AFMR is excited in a Rashba SO system [46]. This effect would be
more prominent for locally noncentrosymmetric AFM materials such as Mn2Au and
CuMnAs where the Rashba couplings are sublattice dependent and change its sign [62].

1.4 Experiments

In the previous section, we describe the origin of the SMF. In this section we re-
view experiments for observing SMFs in DWs, pattered thin films, magnetic vortices,
skyrmions, the Rashba SO-coupled systems, and magnetic nanoparticles.

1.4.1 Domain-wall motion in a ferromagnetic nanowire

As noted in § 1.2.2, the SMF was first measured in a setup of the field-induced DW
motion in a permalloy nanowire by Yang et al. [7]. Here, we describe the real-time
observation of SMF induced by DW motion by Hayashi et al. [11].

The experiment may be summarized as follows: First, we prepared permalloy
nanowires (two samples with thickness of 20 nm and width of 300 and 600 nm) and at-
tached electrodes to them for measuring voltage as shown in Fig. 1.4. Next, we created
DWs in the permalloy nanowire by using a pulsed magnetic field and monitored with
an oscilloscope the real-time voltage signals generated between the electrodes under
an external constant magnetic field. The measurement sequence was repeated about
16000 times for different propagation directions of the DW (left or right) and different
DW types: head-to-head (HH) or tail-to-tail (TT) DW, and the data in each of the
four measurement conditions (Fig. 1.4) were averaged. The four combinations were
measured to separate the contribution of the SMF and an inductive EMF generated
in the measurement circuit. For the in-plane magnetization configuration, the negative
(positive) magnetic charges are accumulated at both ends of the nanowire for a HH
(TT) DW, whereas positive (negative) magnetic charges are concentrated around the
DW region, giving rise to magnetic flux. Therefore, when a HH (TT) domain wall
passes through the electrodes and enters the measurement circuit, the magnetic flux
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Fig. 1.4 Measurement setup for separating the inductive EMFs and SMFs. By changing the

magnetic field directions (a), (c) HH-DW and (b), (d) TT-DW are led into the measurement
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Fig. 1.5 Real time voltage signals due to DW motion [11]. Experimental data (a), (c), and

numerical results (b), (d), for two nanowires with the wire width of 600 and 300 nm.

in the circuit increases (decreases), resulting in an inductive EMF in the circuit at
that moment. Inversely, an inductive EMF in the opposite sense is measured when the
DW leaves the circuit. This inductive EMF changes sign depending on the DW type
but does not depend on the propagation direction of the DW. Conversely, the sign of
the SMF is determined by the direction of the DW motion and is independent of the
type of DW. Thus, the average of the difference between the output voltages for the
TT and HH DWs driven by the same magnetic field is the inductive EMF whereas
that of the sum corresponds to the SMF component.

Figure 1.5 shows the real-time voltage signal due to the SMF observed in the
experiment together with the corresponding numerical results. We find that, for the
external magnetic field, µ0H ∼ 10 mT, a dc voltage of about 1 µV appears in the time
interval expected theoretically. When comparing the measurement results in nanowires
of two different widths, the wider nanowire has the faster onset time and the shorter
duration of the voltage signal. This result is attributed to the dependence of the DW
speed on wire width (in permalloy nanowires, the DW mobility for magnetic fields is
approximately proportional to the wire-width [3]).

This experiment confirms the following important theoretically predicted features
of the SMF due to the field-induced DW motion: (1) The voltage drop occurs in the
direction of the DW motion. (2) The SMF does not depend on the absolute value
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of DW speed and its magnitude is determined by the magnetic field. Moreover, the
numerical results based on the experimental parameters are consistent with the results
of dc measurements.

1.4.2 Ferromagnetic resonance in a patterned thin film

The SMFs generated by the field-induced DW are intermittent because the voltage
appears only during DW propagation between the two electrodes. For device applica-
tions, a continuous SMF was anticipated.

Yamane et al. [9] addressed this demand by using an asymmetrically patterned
thin film. The sample is a comb-shape single permalloy film that consists of a wide flat
pad and many wires as shown in Fig. 1.6(a) (see also Fig 1.1 for the setup). Relying
on the difference in the shape magnetic anisotropy, the FMR is excited either in the
wire or in the pad. As a result, the magnetization depends both on time and space and
the conditions for generating the SMF are fulfilled. Figure 1.6(b) shows the output dc
voltage as a function of microwave power in a permalloy thin film together with the
corresponding numerical analysis.

A similar idea was employed by Nagata et al. [15] to excite a local FMR in a
wedged thin film of a magnetite (Fe3O4) with negative spin polarization (P < 0). The
observed voltage in Fe3O4 is opposite to that of permalloy with P > 0.

A dc voltage is generated by exciting the FMR in a lateral ferromagnetic/non-
magnetic (F/N) junction [63], which is explained by a spin pumping mechanism (i.e,
the voltage is due to the spin accumulation at the F/N interface). In contrast, for
the submillimeter-size comb sample, within which no well-defined interface exists, a
negligibly small spin accumulation arises around the junction between the pad and
wire, making it hard to explain this experiment in terms of the spin pumping.
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Fig. 1.6 Continuous SMF generation by FMR [9]. (a) A SEM image of the junction area of

the comb shape permalloy thin film. (b) Output voltage as a function of microwave power.

Black open (solid) circles represent experimental data (numerical results) for the FMR in the

pad part, and gray open (solid) squares are the same for the FMR in the wire part.
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1.4.3 Vortex core gyration in a magnetic disk

According to Eq. (1.22), rapid motion of a steep magnetization structure is favorable
for generating a larger spin electric field. This is shown in Fig. 1.2(b), where a large
potential difference appears locally around the complex magnetization structure. Such
a situation can be more stably realized in the gyrating motion of a magnetic vortex
core in a nanodisk. Upon applying an ac magnetic field, the core is resonantly excited.
Calculations show that a sizable electric field of the order of kV/m appears in the
direction perpendicular to the motion of the core [21]. The output voltage patterns
patterns depend on the core polarization direction [21] and, with the aid of the Rashba
SO coupling, even on the chirality [33], which can be used in possible spintronic devices
to read out information coded in the core polarization and chirality.

Tanabe et al. [12] detected the ac voltage generated locally around the vortex core
by attaching 100 nm electrodes to a permalloy disk with a diameter of 4.2µm. Again,
the SMF and inductive EMF were separated with special care. The period of the
voltage signal coincides with that of gyrating motion of the core, indicating that the
observed voltage originates from the SMF associated with gyration of the vortex core.

1.4.4 Skyrmion lattice motion in chiral magnets

In chiral magnets such as MnSi and other B20 transition-metal compounds, skyrmion
lattice phases arise as a new form of magnetic order with nonuniform magnetization
texture. When the magnetization texture translates rigidly with the drift velocity vd

as m ≡ m(x − vdt), the time derivative is replaced by the space derivative: ṁ =
−(vd · ∇)m. The net force given by Eqs. (1.21)–(1.23) is then rewritten as f± =
∓e(vk −vd)×B, which induces the topological Hall effect provided that vk 6= vd [30].

Schulz et al. [10] prepared a skyrmion lattice in MnSin single crystals and drove
skyrmion motion by applying electrical currents via the STT effect. They measured the
Hall effect and found an excess component of the Hall voltage only when the skyrmions
flowed along the current direction, confirming the predicted topological Hall effect. In
contrast with the previous examples, which involved excitation by magnetic fields, the
energy of the transverse voltage (SMF) in this experiment is supplied by the external
current source and impurity potentials are essential for fulfilling the condition vk 6= vd.

We note with interest that accumulating SMF outputs by using the skyrmion
lattice [40] and similar structures [41] have been proposed. Furthermore, Shimada and
Ohe [43] numerically studied the SMF induced by skyrmion dynamics in a confined
geometry, taking into the edge effect.

1.4.5 Ferromagnetic resonance in a film with spin-orbit couplings

As noted, SMFs induced purely by the exchange interaction require magnetization
textures (∇m 6= 0). This requirement is relaxed when the SO coupling is introduced,
as explained in §1.3.4. The effects of SO couplings generally become prominent in
systems with the broken spatial inversion symmetry, such as (Ga,Mn)As and in het-
erostructures comprising ferromagnetic metals.

Ciccarelli et al. [14] excited the FMR in rectangular microbars of compressively
strained (Ga,Mn)As via the STT effect by using ac currents, and then measured the
ac voltages with a homodyne detection technique. The output voltages scale linearly
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with respect to precession amplitude, as predicted in the previous section (1.3.4). The
reciprocal relations between the STT and SMF [44] in this system were also examined.

1.4.6 Spin-flip tunneling in magnetic nanoparticles

By using molecular beam epitaxy, Hai et al. [8] fabricated a single-crystal magnetic
tunnel device in which one of the electrodes consists of zinc-blende MnAs nanoparti-
cles. They applied a static magnetic field to the device and observed the shift of the
I-V curve indicating the generation of an effective EMF. The magnetization reversal
of MnAs nanoparticles by the applied magnetic field derivers their Zeeman energy to
conduction electrons via the SMF mechanism. In this system, the SMF effect com-
bines with the Coulomb blockade effect that occurs in the nanoparticles, resulting
in an extremely large magnetoresistance (MR) effect (MR ratio >100,000%) at low
temperature.

Compared with typical magnetic textures such as DWs and vortices, systems of
ferromagnetic nanoparticles have several advantages: the inductive EMFs need not
be separated and the output voltage is quite large value (up to 22 mV). The key
ingredient for the large output voltage is that nanoparticles simultaneously exhibit
macroscopic quantum tunneling among the spin states together with spin-dependent
tunneling through the nanoparticles. The requirement for such quantum tunneling
phenomena is that the system should be cooled down to cryogenic temperature. If
the device is regarded as a type of battery, the total power generated by the static
magnetic field is proportional to the number of nanoparticles. In the experiment, the
output lasts over several tens of minutes, whereas the estimated duration calculated
from the total magnetic energy stored in the nanoparticles is only a few seconds [64].
In a quantum well of Al sandwiched by double spin-filtering EuS layers, Miao et al. [13]
observed a similar long-lasting dc voltage output under static magnetic fields. These
issues underscore the need for further investigation into the SMF in this system both
experimentally and theoretically.

1.5 Applications

In this section, we briefly remark on some applied topics related to the SMF.

1.5.1 Dependence on materials

From Eq. (1.1), the output voltage of the SMF caused by DW motion is determined by
the magnitude of applied magnetic fields apart from the spin polarization. However, as
shown in the previous subsection, attempts to raise the output voltage by increasing
the applied magnetic field lead to the structural deformation of a DWs in permalloy
nanowires and result in the onset of high-frequency noise in the voltage signals. Given
this situation, what principles guide the choice of materials for stabilizing a “large”
SMF?

One answer to this question is to use ferromagnetic materials with a large magnetic
anisotropy. In such materials, the DW is very “rigid” compared with permalloy and
disturbance of the DW structure by the applied magnetic field is suppressed. Therefore,
stable generation of SMFs even with a large magnetic field is expected.
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For example, L10-ordered FePt and Co/Ni multilayer film are known for their large
perpendicular magnetic anisotropy. Numerical simulation [31] shows that stable DW
motion can occur in the range of several hundred mT for a Co/Ni multilayer nanowire
and up to several T for a FePt nanowire. With such magnetic fields, the Co/Ni shows
tens of microvolts, and the FePt is expected to reach hundreds of microvolts, which
is about 100 times larger than those reported in the permalloy samples so far. More-
over, DWs in these materials are narrow and have relatively low DW mobility. These
properties are also advantageous in terms of downsizing of devices that use SMFs.

1.5.2 Shape effect

For the SMF introduced so far, external magnetic fields are used to drive DWs. Con-
sidering the spin electric field (1.22), however, one can see that it does not matter what
causes the magnetization dynamics. For example, a DW has a certain surface energy,
which is proportional to the cross-sectional area of a magnetic nanowire [65]. There-
fore, in a magnetic nanowire with a nonuniform cross-sectional area, a DW moves
spontaneously in the direction in which the DW energy is lowered (i.e., the cross-
sectional area decreases). In such a nonuniform magnetic nanowire, the generation
of voltages originating from the internal magnetic energy of the ferromagnet can be
expected without requiring an external magnetic field.

To demonstrate this idea, numerical simulations of a shaped permalloy nanowire
were done [29]. The DW was found to move spontaneously in a region where the
wire width tapers off without the aid of an external magnetic field and, in turn,
the SMF signals of several microvolts were obtained. This result indicates that the
internal magnetic energy stored in the DW of ferromagnetic materials may be used for
generating an EMF and its output characteristic can be controlled by nanoprocessing
of the wire shape. Magnetic nanodevices such as a memory elements and current
amplifiers have been proposed based on this concept [4].

Another porposal is to use the shape effect in a “magnetic power inverter,” [34],
which is a device that converts dc magnetic fields to ac electric voltages. This device
consists of a magnetic nanowire with the width modulation. In such a patterned wire,
a DW behaves like an elastic membrane and the DW energy varies as a function of
the DW position. Accordingly, a DW introduced in the nanowire is subjected not
only to an applied dc magnetic field but also to an effective magnetic field arising
from the modulation of the DW energy and that is proportional to the wire width. In
this case, the output voltage has an ac component that reflects the alternating DW
energy in addition to a normal dc component due to the input static magnetic field.
Characteristics of the ac component such as amplitude (several µV) and frequency
(MHz to GHz) can be tuned by design of the wire shape, choice of materials, and
magnitude of applied static magnetic fields.

1.6 Summary and outlook

We have seen that the SMF is induced in magnetic nanostructures via the exchange
interaction between conduction spin and magnetization. Various types of the spin elec-
tric fields are possible: adiabatic, nonadiabatic, and their SO coupled equivalents. In
experiment, the adiabatic contributions with/without SO coupling have been observed
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whereas detecting nonadiabatic effects is challenging. The SMF offers electrical detec-
tion of magnetization dynamics, which would allow us to monitor the elusive dynamics
of antiferromagnets.

In spintronics applications, the current drive is to obtain higher performance of
existing devices, such as magnetic memory, magnetic head, and magnetic sensors, has
been pursued so far. Today they are widely recognized as promising candidates for
ultimate “energy-saving” technology. Additionally, SMF introduces the basic concept
of “energy-harvesting” technology in spintronics and opens a new pathway to the
conversion between magnetic and electric energy by using magnetic materials.

In contrast, the magnitude of the SMF realized so far is limited to at most a
few microvolts at room temperature. For practical use, the weakness of the output
voltage signals remains a major challenge. To solve this problem, two directions may
be pursued: The first is to elucidate the SMF-amplification mechanism in the systems
of magnetic nanoparticles, as discussed in §1.4.6. The second is to regard the SMF as
an effective change in resistance rather than as a voltage signal. The former provides an
interesting research theme in condensed matter physics and the latter can be applied
to magnetic heads and high-sensitivity magnetic sensors.
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