Search for ^{283,284,285}FI decay chains

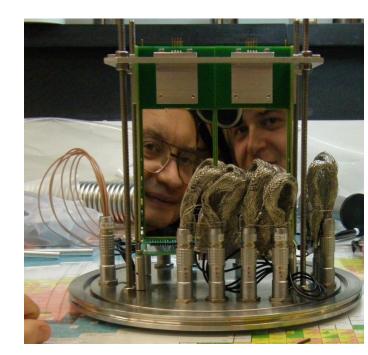
Krzysztof P. Rykaczewski Physics Division, Oak Ridge National Laboratory for the Russia - US - Poland collaboration

JINR:

V. K. Utyonkov, Yu.S.Tsyganov, A.N. Polyakov, A.A Voinov,
Yu. Ts. Oganessian, F. Sh. Abdullin, S. N. Dmitriev, M. G. Itkis,
V. Sabelnikov, R. N. Sagaidak, I. V. Shirokovsky,
M. V. Shumeyko, V. G. Subbotin, A. M. Sukhov,
and G. K. Vostokin

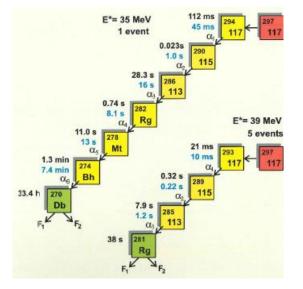
ORNL:

N. T. Brewer, K. Miernik*, J. B. Roberto, K. P. Rykaczewski * now University of Warsaw


UTK/ORNL: R. K. Grzywacz

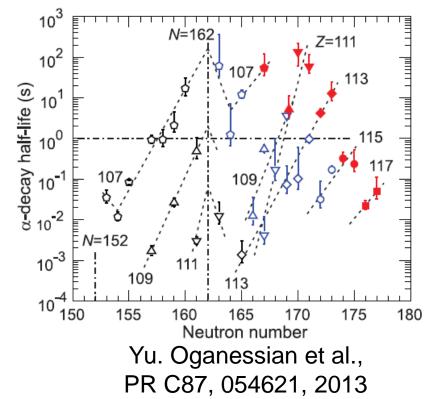
Vanderbilt: J. H. Hamilton *LLNL:* R. A. Henderson and M. A. Stoyer

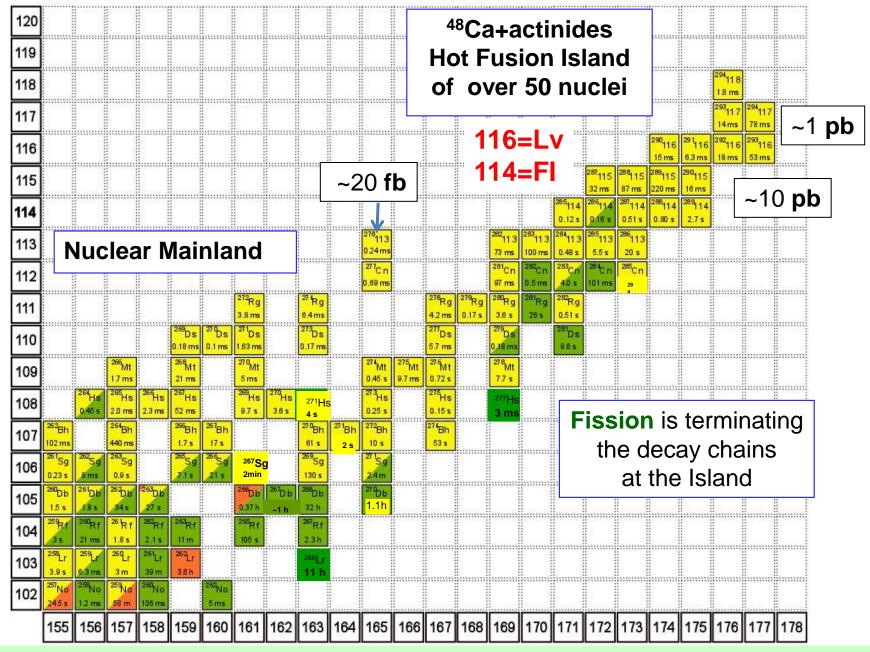
ASRC, JAEA, Tokai, March 2014


Outline

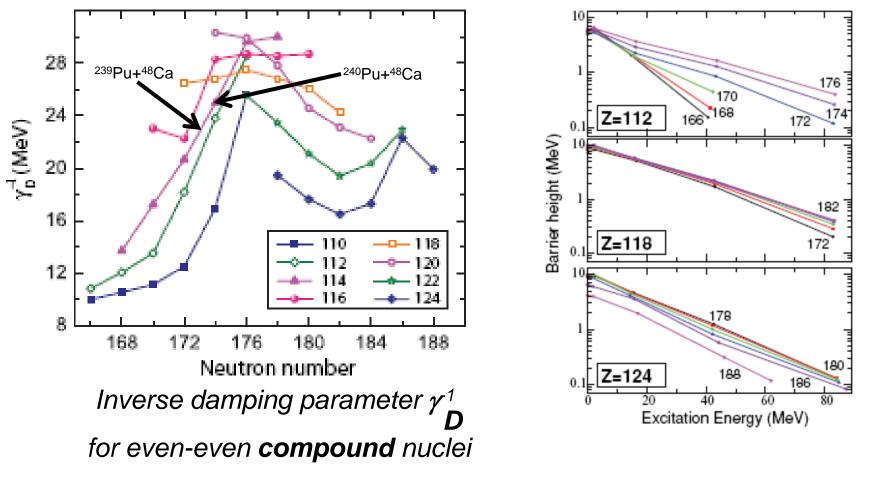
- Super Heavy Nuclei the Island and Mainland
- Reactions with ^{239,240}Pu targets and ⁴⁸Ca beam
- Digital detection system for Super Heavy Nuclei
- ²³⁹Pu+⁴⁸Ca (6th Dec 2013-22nd Feb 2014, 1.28*10¹⁹ beam dose) at the DGFRS (Dubna)
- Summary

Towards "Island of Stability"


• New element Z = 117 (Russia-US collaboration)


Yu. Oganessian et al., PRL 104, 2010

Rose Boll and Shelley Van Cleve purifying ²⁴⁹Bk at ORNL



All nuclei from the Island were created using ⁴⁸Ca beam, attempts to use ⁶⁴Ni, ⁵⁸Fe, ⁵⁴Cr, ⁵⁰Ti + actinides were so far not successful

Building bridges between the mainland and super heavy island understanding SHE production mechanism using ⁴⁸Ca,⁴⁴Ca and ⁴⁰Ca beams

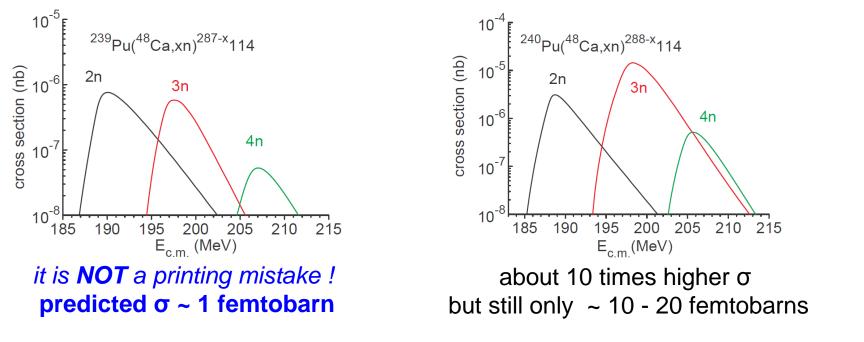
120																										
119		K	R	at	AF	PS	DN	١P	me	et	ing	<u>,</u> 2	201													
118																						²⁹⁴ 118 1.8 ms				
117											40	Ca + ²⁴⁸	Cm→	²⁸⁵ 116+	3n					²⁹³ 117 14 ms	²⁹⁴ 117 78 ms					
116								(4ºCa	+ ²⁴² Pu	→ ²⁷⁹	114+ 31	\triangleright		²⁸⁵ 116 8 µs			₩		²⁹⁰ 116 15 ms	²⁹¹ 116 6.3 ms	²⁹² 116 18 ms	²⁹³ 116 53 ms			
115								(⁴⁴ Ca	+ ²³⁹ Pu	→ ²⁷⁹	114+ 41	> <	⁸ Ca + ²³	9 Pu→	²⁸³ 114	l+ 4n	32 ms	87 ms	²⁸⁹ 115 0.22 s	²⁹⁰ 115 16 ms					
114											²⁷⁹ 114 0.73 μs		²⁸¹ 114 17 μs		²⁸³ 114 0.27 ms		²⁸⁵ 114 0.12 s		²⁸⁷ 114 0.51 s	²⁸⁸ 114 0.80 s	²⁸⁹ 114 2.7 s					
113											²⁷⁸ 113 0.24 ms				²⁸² 113 73 ms	²⁸³ 113 100 ms	²⁸⁴ 113 0.48 s	5.5 s	²⁸⁶ 113 19.6 s							
112									²⁷⁵ Сп 4.18 µs		²⁷⁷ Cn 0.69 ms		²⁷⁹ Cn 0.23 ms		²⁸¹ Cn 97 ms	²⁸² Cn 0.5 ms	²⁸³ Cn 4.0 s	²⁸⁴ Cn 101 ms	²⁸⁵ Cn 34ms							
111							²⁷² Rg 3.8 ms		²⁷⁴ Rg 6.4ms				²⁷⁸ Rg 42 ms	²⁷⁹ Rg 0.17 s	²⁸⁰ Rg 3.6 s	²⁸¹ Rg 26 s	²⁸² Rg 0.51 s									
110					²⁶⁹ Ds 0.18 ms	²⁷⁰ Ds 0.1 ms	²⁷¹ Ds 1.63 ms		²⁷³ Ds 0.17 ms		²⁷⁵ Ds 0.13 ms		²⁷⁷ Ds 5.7 ms		²⁷⁹ Ds 0.18 ms		²⁸¹ Ds 9.6s									
109			²⁶⁶ Mt 1.7 ms		²⁶⁸ Mt 21 ms		^{27 Q} M t 5 ms	\square			²⁷⁴ Mt 0.45 s	²⁷⁵ Mt 9.7 ms	²⁷⁶ Mt 0.72 s		²⁷⁸ Mt 7.7 s											
108		²⁶⁴ Hs 0.45 s	2.0 ms	2.3 ms	²⁶⁷ Hs 52 ms		²⁶⁹ Hs 9.7 s	²⁷⁹ Hs 3.6 s	²⁷¹ Hs 11 s		²⁷³ Hs 025s		²⁷⁵ Hs 0.15 s													
107	²⁶² Bh 102 ms		²⁵ Bh 440 ms		1.7 s	267Bh			²⁷⁰ Bh 61s				^{27 4} Bh 53 s													
106	²⁶¹ Sg 0.23 s	8 ms	²⁶³ Sg 0.9 s		²⁶⁵ Sg 7.1 s	²⁶⁶ Sg 21 s	²⁶⁷ Sg 4.9 h		²⁶⁹ Sg 130 s		²⁷¹ Sg 2.4 m															
105	²⁶⁰ Db 1.5 s	1.85	²⁶² Db 34 s	1275			²⁵⁵ Db 0.37 h				²⁷⁰ Db 23.1 h															
104	²⁵⁹ Rf 3 s	²⁶⁰ Rf 21 ms	²⁶¹ Rf 1.8 s	²⁶² Rf 2.1 s	²⁶³ Rf 11 m		²⁶⁵ Rf 105 s		²⁶⁷ Rf 2.3 h				Ζ	ag	rek	bae	ev (et a	al.,	PF	r C	:85	, 2	201	2	
103	²⁵⁸ Lr 3.9 s	259 8 3 ms	²⁶⁰ Lr 3 m	²⁶¹ Lr 39 m	²⁶² Lr 3.6 h																					
102	²⁵⁷ No 24.5 s	²⁵⁸ No 12ms	²⁵⁹ No 58 m	²⁶⁰ No 106 ms		²⁶² No 5 ms																				K
	155	156	157	158	159	160	161	162	163	164	165	166	167	168	169	170	171	172	173	174	175	176	177	178	179)G

Sheikh, Nazarewicz, Pei; Phys. Rev. C 80, 011302(R) 2009 Systematic study of fission barriers in excited states of superheavy nuclei

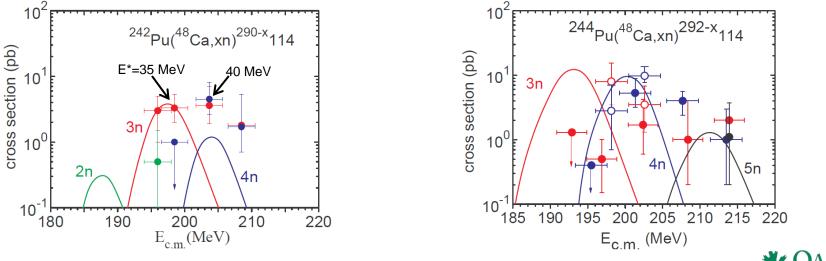
Denisov, Hofmann, PR C61, 2000 Itkis, Oganessian, Zagrebaev, PR C65, 2002

Examples of production cross section predictions

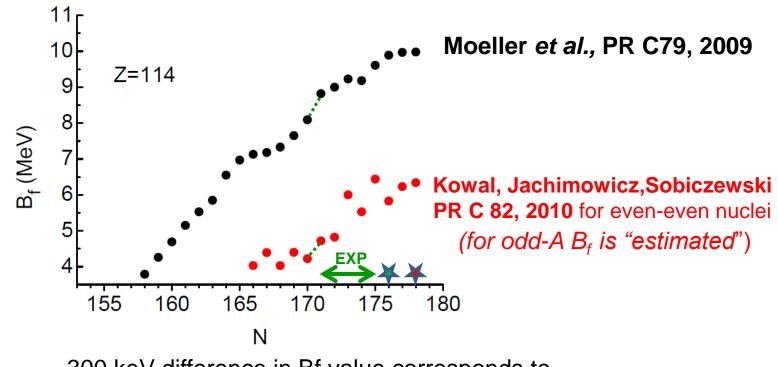
Walter Loveland, private communication, 2010


 ${}^{48}Ca + {}^{239}Pu \rightarrow {}^{285}114 + 2n \quad E^* \sim 22\text{-}24 \text{ MeV}, \ \sigma \sim 100 \text{ pb} \\ {}^{48}Ca + {}^{239}Pu \rightarrow {}^{284}114 + 3n \quad E^* \sim 28\text{-}30 \text{ MeV}, \ \sigma \sim 13 \text{ pb} \\$

let's run and hit ²³⁹Pu with ⁴⁸Ca !

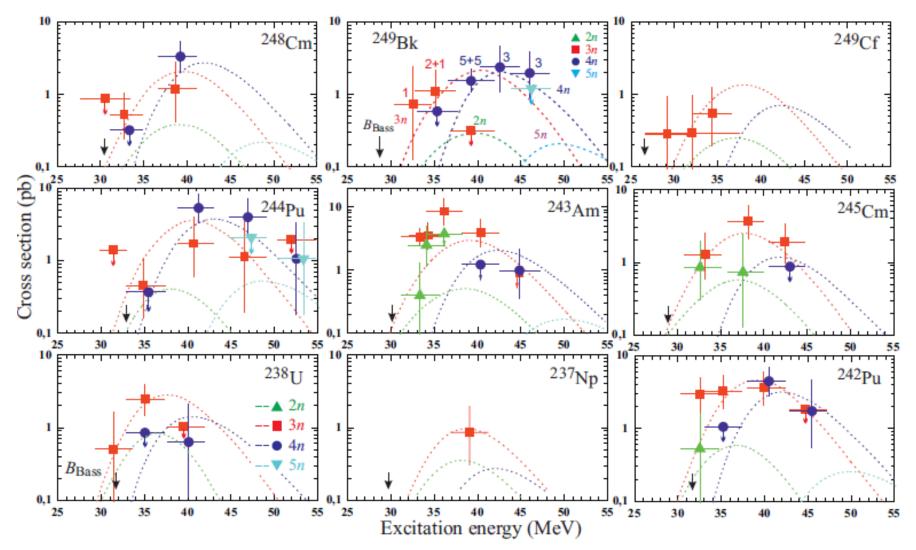

Well, let's check with others before running

from Krystyna Wilczyńska, see Siwek-Wilczyńska, Cap, Kowal et al., PR C86, 2012


.. and Krystyna et al. seem to reproduce measured X-sections (more or less ..)

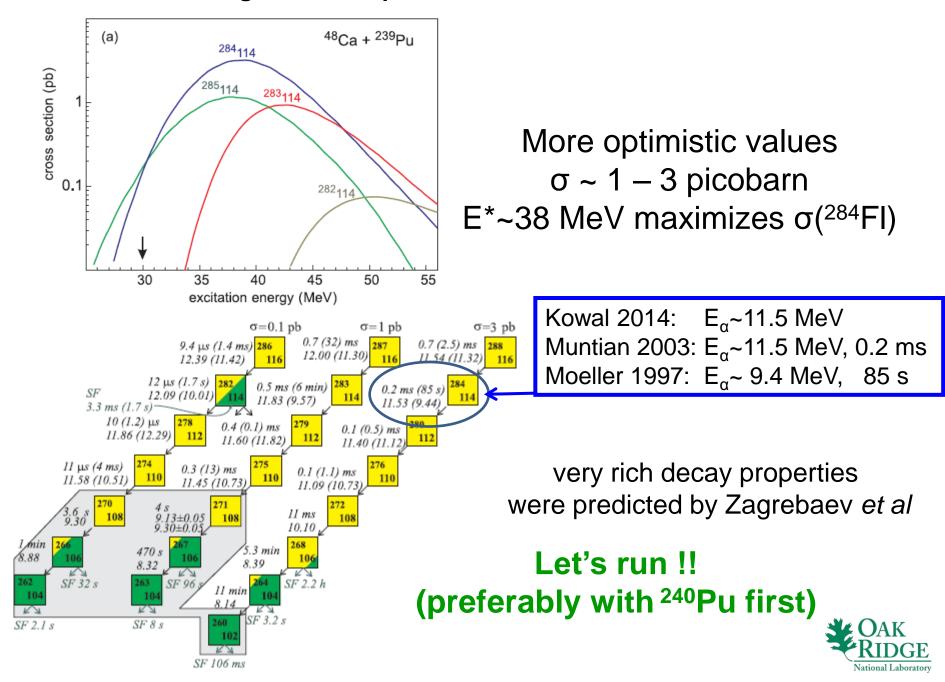
let's forget about hitting ²³⁹Pu with ⁴⁸Ca !

Krystyna Wilczyńska *et al* used fission barriers values B_f from M. Kowal *et al* calculations in her X-section calculations


~ 300 keV difference in Bf value corresponds to about an order of magnitude change in X-section value

note the ~ 0.7 MeV drop in B_f value between ²⁸⁵Fl and ²⁸⁴Fl

→ identified ²⁸⁵⁻²⁸⁹FI isotopes


Valery Zagrebaev's *et al.*, predictions see, e.g., **Zagrebaev, Karpov, Greiner; PR C85, 014608, 2012**

It looks good for the cases, where experimental data are known (but Krystyna *et al.* had a reasonable agreement, too)

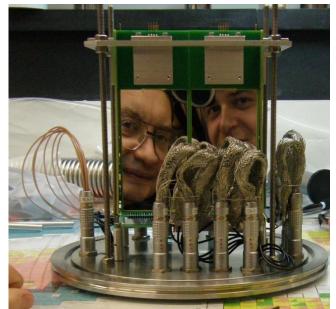
Zagrebaev, Karpov, Greiner; PR C85, 014608, 2012

Connecting Hot Fusion Island with Nuclear Mainland search for new Z=114 Flerovium isotopes and their decay products

Vladimir Utyonkov's estimations

²⁴⁰Pu material from Oak Ridge
delivered to Dubna on 27thDec. 2013
(after 51 weeks of paperwork)

Dubna, Dec.2013


New ORNL-UTK detectors and digital data acquisition system

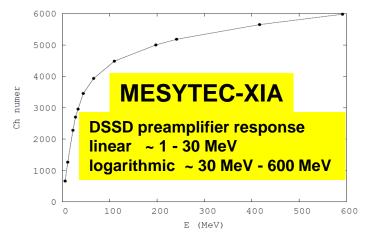
similar DAQ was serving many ORNL RMS exps, PSSD+Si-box+MCPs at Z=120 exp at SHIP and now is used at JAEA RMS /R. Grzywacz/

MICRON detectors

128 x48 mm 1 mm wide strips, 300 μm **DSSD** and matching single **Si-veto** detector

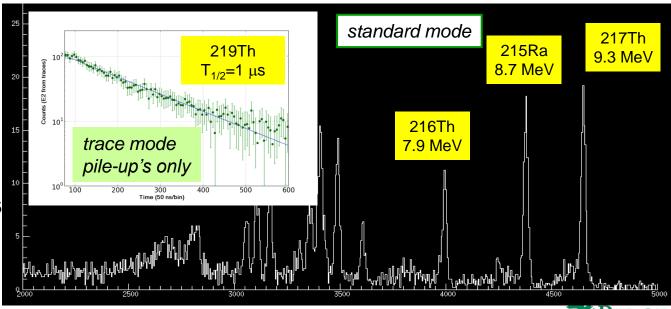
> six 120 x 65 mm single Si forming **Si-box**

MESYTEC lin-log preamps XIA Pixie16 rev D (208 channels) Dell Power Edge

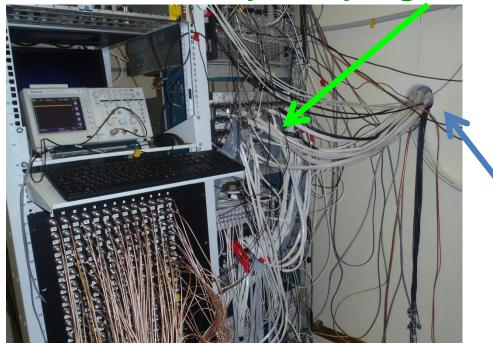

National Laboratory

ORNL-UTK 8-detector and digital data acquisition system operating at the Dubna Gas Filled Recoil Separator (DGFRS)

Si-detector stack



National Laboratory


α-emitters including
1 µs activity of ²¹⁹Th
studied at the DGFRS
during ⁴⁸Ca+^{nat}Yb run
Nov.-Dec. 2013.

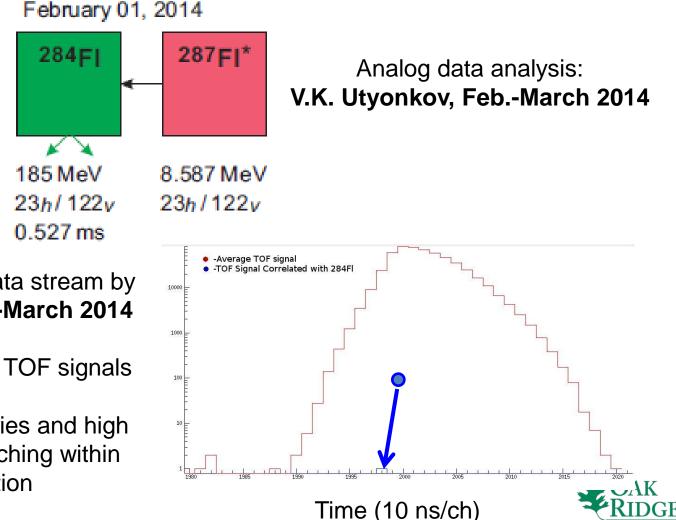
Search for new isotopes of element Z=114 (FI) with ^{239, 240}Pu targets started on 6th Dec. 2013

energy of α -particles

Digital and analog electronics serve new detector system after preamp signals splitters modules

208 channels of 100 MHz Pixie16

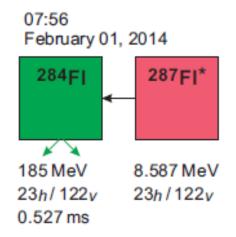
2 MWPCs + (128+48)=176 strips DSSD + 1 Si-veto + 6 Si-box


multiplexing used in analog electronics (so far)

low gain for front 48 strips and higher gain for back 128 strips in digital branch

Test reaction: ⁴⁸Ca (216 MeV mid-target) +^{nat}Yb (0.5 mg/cm²) \rightarrow ²¹⁶⁻²¹⁹Th Main experiment: ⁴⁸Ca (245 MeV) +²³⁹Pu(0.5 mg/cm²) \rightarrow ²⁸⁷FI*(**E*~ 38 MeV**) \rightarrow ^{284,283}FI

Finally one candidate event shows up, observed consistently in analog and digital ACQs. 07:56



National Laboratory

Evaluation of digital data stream by Nathan Brewer, Feb.-March 2014

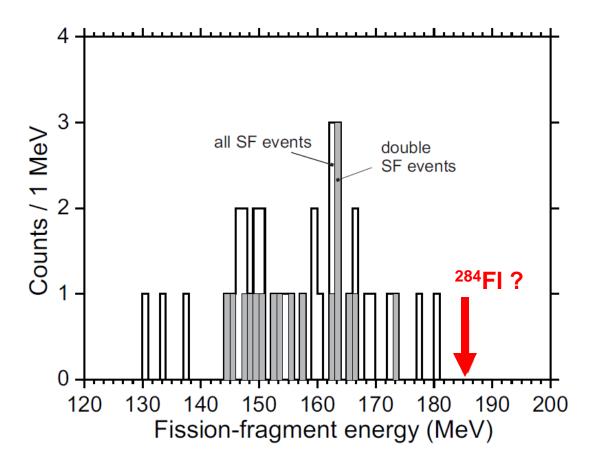
valid two MWPCs and TOF signals

front/back recoil energies and high SF energy values matching within current energy calibration

VALID implantation – fast SF decay event (random origin < 10⁻⁷, V. K. Utyonkov)

previous good "recoil" (E>5 MeV, valid TOF) implanted in the same pixel 7.6 hours earlier

Assignment of the event:


²⁸⁴FI or, e.g., ^{240m}Am SF 0.9 ms isomer from +1p transfer on ²³⁹Pu?

If it is ²⁸⁴**FI:** $\sigma \sim 0.3$ pb (10 times below Zagrebayev's,100 times above Krystyna's σ_{cal})

Relatively large SF energy points to higher-Z nucleus (Z=114 Fl vs Z=95 Am)

Collection of SF decay energies from SF-isomers created in transfer reactions between ²³⁸U(1), ²⁴²Pu (8) and ²⁴³Am (23) targets and ⁴⁸Ca beams observed at the DGFRS experiments, **V.K. Utyonkov 2014**

Relatively large SF energy points to higher-Z nucleus (Z=114 Fl vs Z=95 Am)

No other events indicating the presence of SF isomers in Am and Pu isotopes around mass 239 were identified.

Evaluation continue ...

- We need more events to determine better the half-life to show that new SFactivity does not match known SF-isomer next to ²³⁹Pu.
- Other (lower) beam energy ? SHE Factory experiment
- Experiment with ²⁴⁰Pu target and ⁴⁸Ca, 4n channel \rightarrow ²⁸⁴Fl

Summary

- Program of "connecting Island to Mainland" started at the DGFRS
- New detection system implemented and tested at the DGFRS, parallel digital and analog data acquisition, high DSSD segmentation, sensitivity to sub-µs half-lives (R. Grzywacz).
- The reaction between ²³⁹Pu and ⁴⁸Ca was studied at the DGFRS. At ~ 10¹⁹ beam dose one candidate event for SF activity of ²⁸⁴FI detected. If it is ²⁸⁴FI, than σ ~ 0.3 pb, off-line analysis is in progress
- Experiment with ²⁴⁰Pu+⁴⁸Ca is scheduled for May/June 2014
- Long experiment with mixed-Cf target (^{249,250,251}Cf) + ⁴⁸Ca is planned to be started, when Cf target sectors from Oak Ridge reach Dubna 3 out of 12 target sectors ready on 3/14/2014, 0.33 mg/cm²
- Dubna's "SHE Factory" is getting built (~ 2017)

Photo-impressions from Dubna, Dec 2013 and Jan 2014

Volga River and Orthodox Baptizing

Thank you for listening and Reimei for supporting this workshop

