

Finite-range droplet macroscopic model + folded-Yukawa singleparticle microscopic model

Moller, Nix, Myers, Swiatecki Atomic and Nuclear data tables, 59, 185 (1995)

- Nuclear deformation and collectivity in the mass 70-80 is region is largely driven by proton, neutron occupancy of the $g_{9/2}$ orbit.
- Large shell-gaps at prolate, spherical and oblate shapes results in the potential for shape co-existence for many nuclei in the mid-mass region

A Lemasson et al., PRC 85, 041303(R) (2012)

Constrained HF Bogoliubov theory with mapping to the 5D collective Hamiltonian

Transition strengths difficult to measure:

⁶⁸Se, ⁷²Kr Relativistic Coulex,

⁶⁴Ge Plunger lifetime expt following nucleon removal

⁷⁶Sr Doppler shift lineshape measurements + charge exchange reaction (#)

Shell model using a truncated $f_{5/2}$, $p_{1/2}$, $g_{9/2}$, $d_{5/2}$ model space

M Hasagawa, K Kaneko, T Mizusaki, Y Sun, PLB 656, 51 (2007)

Sharp increase in B(E2) values beyond 70 Br is attributed to a sudden jump of protons and neutrons into the upper *gd* shell.

Separator + recoil- β -tagging (or PPAC/ Ion Chamber) + Differential Plunger Need a good efficient γ ray array

Even-A Kr isotopes are known to exhibit shape co-existence, with excited 0⁺ states already identified: E Bouchez et al., PRL 90, 083502 (2003)

 $R_{4/2} = E_{4+}/E_{2+}$

Why are the $R_{4/2}$ values well below the rotational limit for A~80 nuclei?

A Lemasson et al., PRC 85, 041303(R) (2012)

* Clear correlation between B(E2)/A and $R_{4/2}$ values for vibrational to rotational nuclei:

* Deviations (OPEN SYMBOLS) occur in nuclei where shape co-existence is known or expected

0⁺₂ in ⁷⁶Sr at ~0.5 MeV: A. Petrovici *et al., Nucl. Phys. A605, 290 (1996).*

Nuclei such as ⁷⁶Sr, ⁷⁸Y, ⁸⁰Zr, ⁸²Nb, ⁸⁴Mo etc only have data on yrast states \Rightarrow clearly need information on non-yrast states to test the hypothesis that shape co-existence may be responsible for low R_{4/2} values.

Studies of Binding energies in e-e and o-o nuclei indicate that T=1 *np* pairing is dominant, with no evidence for a T=0 (deuteron-like) pair condensate.
 P. Vogel, Nucl. Phys. A662 (2000) 148,
 A.O. Macchiavelli et al PRC 61 (2000) 014303R

• Comparison of data with mean-field calculations for A=68-80 nuclei suggests the presence of a strong isovector (T=1) *np* pair field at low spin, but no evidence for T=0 pairing.

A Afanasjev, S Frauendorf, Phys. Rev. C 71, 064318 (2005)

• Odd-odd nuclei such as ${}^{66}As$, ${}^{70}Br$, ${}^{74}Rb$ have T = 1, 0⁺ grd states, but no low-lying [J=1,T=0] state, implying T=0 pairing mode is weak in this mid-mass region.

Does T=0 pairing/ interaction play a role at low or high spin in heavier N=Z nuclei?
 A.L. Goodman PRC 58 R3051 (1998) and PRC 60, 014311 (1999)
 W Satula, R Wyss PLB 393, 1 (1997) and PRL 86, 4488 (2001)
 J Engel et al., PLB 389, 211 (1996) + Etc.

Neutron-proton pairing in N=Z nuclei

A. L. Goodman , PRC 60, 014311 (1999) – studies of ground states of e-e N = Z, A = 76-96 nuclei

Calculation by W. Satula, R. Wyss, Phys. Rev. Lett. Vol. 86, 4488 (2001)

As yet there is no data that definitively supports the presence of np T=0 BCS type pairing condensate

Excited states in ⁹²Pd populated via fusionevaporation at the Coulomb barrier (GANIL).

Shell Model Calculations in $p_{1/2}, g_{9/2}$ space predict strong np interactions \rightarrow Spin-aligned T=0 np coupling scheme for N=Z nuclei below ¹⁰⁰Sn (J. Blomqvist et al.)

•4-deuteron hole-like pairs coupled to J=9, each with a different angular momentum projection M = +9, -9, +7, -7 to satisfy the Pauli Principle.

Aligned np coupling: $\Psi_{G.S.} = [(\{vg_{9/2}^{-1} \times \pi g_{9/2}^{-1}\}_{9+})^2]_{0+} \times [(\{vg_{9/2}^{-1} \times \pi g_{9/2}^{-1}\}_{7+})^2]_{0+}$ • Similar results confirmed for ⁹⁶Cd - S Zerguine and P Van Isacker, PRC 83, 064311 (2011)

Effect of isoscalar np interaction at N=Z

Calculations done in several model spaces,:i.e., 0g9/2, 0g9/2-1p1/2 and 0g9/2-1p1/2-0f5/2-1p3/2 which all give similar results . Int. parameters determined to reproduce exp energies in ^{94,95}Pd, ^{93,94}Rh

Isomers in $N \cong Z$ nuclei below ¹⁰⁰Sn

Isomers in $N \cong Z$ nuclei below ¹⁰⁰Sn

H. Geissel *et al.* NIM B70 (1992) 286 S. Pietri *et al.* Nucl. Inst. and Meth. B261(2007) 1079 R. Kumar *et al.* Nucl. Inst. and Meth. A598 (2009) 754

Isomers in $N \cong Z$ nuclei below ¹⁰⁰Sn

Evidence for T=0 np Int. in ⁹⁶Cd

• Long standing SM predictions of the presence of 16⁺ and 25/2⁺ spin-gap isomers in ^{96,97}Cd, for example:

K Ogawa, Phys Rev C 28, 958 (1983)

• Spin gap isomer results from extra BE due to the large attractive n-p interaction for maximally aligned hole-hole configs.

Existence of isomer provides evidence for the importance of the T = 0 np interaction at high-spin

Cf ⁹²Pd results – B Cederwall et al., Nature 469, 68 (2011)

Gross and Frenkel, Nucl. Phys. A 267, 85 (1976)

SM Calculations by H Grawe GF int., $g_{9/2}$, $p_{1/2}$ model space

Spin-gap isomer ⁹⁶Cd

Spin-gap isomer ⁹⁶Cd

⁹⁶Ag, 15⁺ state: 100% of GT strength in $p_{1/2}$, $g_{9/2}$ model space

 $B_{GF} = 0.14 \text{ with quenching factor of 0.6 (Herndl and Brown NPA627, 35 (1997))}$ $B_{exp} = [3860(18) * I_{\beta}] / (f T_{1/2}) = 0.19^{+0.08}_{-0.07}$

with $T_{1/2} = 0.29$ secs

Spin-gap isomer ⁹⁶Cd – LSSM Calcs with Core excitations

GT strength is fragmented, due to the mixed nature of the states

High statistics are needed to obtain the B(GT) distribution

Summary

- Mapping of collectivity along the N=Z line is underway, but still lots to do:
 ⇒ lifetime measurements/ mapping B(E2) values
 ⇒ role of shape co-existence in the mid-mass A~ 66-84 region.
- Evidence that <u>isoscalar np coupling</u> is important at both low and high spin for N=Z nuclei close to ¹⁰⁰Sn. But no direct evidence yet of T=0 np (BCS type) pair condensate.

 \Rightarrow Need to measure lifetimes of low-lying states in A~90 N=Z nuclei and \Rightarrow extend/ identify yrast bands in nuclei such as ⁹²Pd/ ⁹⁶Cd as well as investigate T=0,1 states in ⁹⁰Rh, ⁹⁴Ag, ⁹⁸In etc.

 Several isomers/ γ rays observed in N~Z mass 90 nuclei in recent years, including core-excited states –

⇒ these data provide stringent tests of model spaces and shell model interactions, but

 \Rightarrow more data required to help tune the interactions used in SM calculations

Significant interest to try and extend studies to N < Z nuclei to investigate isomers/ isospin symmetry/ effects of weak binding in the mass 60-100 region.