Spectroscopy near the $N=Z$ line below ${ }^{100} S n$

Spectroscopy near the $\mathrm{N}=\mathrm{Z}$ line

Medium mass N~Z Physics

* Collectivity/ Shape co-existence

Collectivity along the $\mathrm{N}=\mathrm{Z}$ line

Finite-range droplet macroscopic model + folded-Yukawa singleparticle microscopic model

Moller, Nix, Myers, Swiatecki
Atomic and Nuclear data tables, 59, 185 (1995)

Collectivity along the $N=Z$ line

- Nuclear deformation and collectivity in the mass 70-80 is region is largely driven by proton, neutron occupancy of the $g_{9 / 2}$ orbit.
- Large shell-gaps at prolate, spherical and oblate shapes results in the potential for shape co-existence for many nuclei in the mid-mass region

Collectivity along the $N=Z$ line

\# A Lemasson et al., PRC 85, 041303(R) (2012)
Constrained HF Bogoliubov theory with mapping to the 5D collective Hamiltonian
J P Delaroche et al., PRC 81, 014303 (2010)

Transition strengths difficult to measure:
${ }^{68} \mathrm{Se},{ }^{72} \mathrm{Kr}$ Relativistic Coulex,
${ }^{64}$ Ge Plunger lifetime expt following nucleon removal
${ }^{76}$ Sr Doppler shift lineshape measurements + charge exchange reaction (\#)

Collectivity along the $N=Z$ line

Shell model using a truncated $f_{5 / 2}, p_{1 / 2}, g_{9 / 2}, d_{5 / 2}$ model space

M Hasagawa, K Kaneko, T Mizusaki, Y Sun, PLB 656, 51 (2007)
Sharp increase in $B(E 2)$ values beyond ${ }^{70} \mathrm{Br}$ is attributed to a sudden jump of protons and neutrons into the upper gd shell.

Separator + recoil- β-tagging (or PPAC/ Ion Chamber) + Differential Plunger Need a good efficient γ ray array

Shape co-existence along the $\mathrm{N}=\mathrm{Z}$ line

Even-A Kr isotopes are known to exhibit shape co-existence, with excited 0^{+}states already identified: E Bouchez et al., PRL 90, 083502 (2003)

Shape co-existence along the $\mathrm{N}=\mathrm{Z}$ line

Why are the $R_{4 / 2}$ values well below the rotational limit for $A \sim 80$ nuclei?

Shape co-existence along the $\mathrm{N}=\mathrm{Z}$ line

A Lemasson et al., PRC 85, 041303(R) (2012)

* Clear correlation between $B(E 2) / A$ and $R_{4 / 2}$ values for vibrational to rotational nuclei:
* Deviations (OPEN SYMBOLS) occur in nuclei where shape co-existence is known or expected

Shape co-existence along the $\mathbf{N}=\mathbf{Z}$ line

$\mathrm{O}^{+}{ }_{2}$ in ${ }^{76} \mathrm{Sr}$ at $\sim 0.5 \mathrm{MeV}:$ A. Petrovici et al., Nucl. Phys. A605, 290 (1996).

Nuclei such as ${ }^{76} \mathrm{Sr},{ }^{78} \mathrm{Y},{ }^{80} \mathrm{Zr},{ }^{82} \mathrm{Nb},{ }^{84} \mathrm{Mo}$ etc only have data on yrast states \Rightarrow clearly need information on non-yrast states to test the hypothesis that shape co-existence may be responsible for low $R_{4 / 2}$ values.

Neutron-proton pairing in $\mathbf{N}=\mathrm{Z}$ nuclei

a
$T=1, J=0$
b $T=0, J>0$

- Studies of Binding energies in e-e and o-o nuclei indicate that $T=1 n p$ pairing is dominant, with no evidence for a $\mathrm{T}=0$ (deuteron-like) pair condensate.
P. Vogel, Nucl. Phys. A662 (2000) 148,
A.O. Macchiavelli et al PRC 61 (2000) 014303R
- Comparison of data with mean-field calculations for $A=68-80$ nuclei suggests the presence of a strong isovector ($\mathrm{T}=1$) np pair field at low spin, but no evidence for $\mathrm{T}=0$ pairing.
A Afanasjev, S Frauendorf, Phys. Rev. C 71, 064318 (2005)
- Odd-odd nuclei such as ${ }^{66} \mathrm{As},{ }^{70} \mathrm{Br},{ }^{74} \mathrm{Rb}$ have $\mathrm{T}=1,0^{+}$grd states, but no low-lying [$\mathrm{J}=1, \mathrm{~T}=0$] state, implying $\mathrm{T}=0$ pairing mode is weak in this mid-mass region.
- Does $\mathrm{T}=0$ pairing/ interaction play a role at low or high spin in heavier $\mathrm{N}=\mathrm{Z}$ nuclei?
A.L. Goodman PRC 58 R3051 (1998) and PRC 60, 014311 (1999)

W Satula, R Wyss PLB 393, 1 (1997) and PRL 86, 4488 (2001)
J Engel et al., PLB 389, 211 (1996) + Etc.

Neutron-proton pairing in $\mathbf{N}=Z$ nuclei

A. L. Goodman , PRC 60, 014311 (1999) -
studies of ground states of e-e $N=Z, A=76-96$ nuclei

Calculation by W. Satula, R. Wyss, Phys. Rev. Lett. Vol. 86, 4488 (2001)

Evidence for isoscalar np interaction

As yet there is no data that definitively supports the presence of $n p T=0$ BCS type pairing condensate

Evidence for isoscalar np interaction

Excited states in ${ }^{92} \mathrm{Pd}$ populated via fusionevaporation at the Coulomb barrier (GANIL).

$$
\begin{gathered}
{ }^{36} \mathrm{Ar}+{ }^{58} \mathrm{Ni} \rightarrow{ }^{94} \mathrm{Pd}^{*} \rightarrow{ }^{92} \mathrm{Pd}+2 \mathrm{n} \\
\mathrm{E}_{\text {beam }}=111 \mathrm{MeV} \mathrm{I}_{\text {beam }}=5-10 \mathrm{pnA}, 14 \text { days }
\end{gathered}
$$

Detector systems:

EXOGAM
 NEUTRON WALL

 $\varepsilon \sim 0.11 \quad \varepsilon(n) \sim 0.25 \varepsilon($ "clean" $2 n) \sim 0.03$DIAMANT CsI(TI) array $\varepsilon(p) \sim 0.50 \varepsilon(\alpha) \sim 0.40$ $\varepsilon($ any charged particle) $\sim 0.66 \rightarrow$ veto efficiency for particle mult. $>1=88 \%$

${ }^{92}$ Pd level scheme

H Al-Azri (York PhD student)

Evidence for isoscalar np interaction

Shell Model Calculations in $\mathrm{p}_{1 / 2}, 9_{9 / 2}$ space predict strong np interactions \rightarrow Spin-aligned $T=0 \mathrm{np}$ coupling scheme for $\mathrm{N}=\mathrm{Z}$ nuclei below ${ }^{100} \mathrm{Sn}$ (J. Blomqvist et al.)

${ }^{92} \mathrm{Pd}_{\mathrm{gs}}$

-4-deuteron hole-like pairs coupled to $J=9$, each with a different angular momentum projection $M=+9,-9,+7,-7$ to satisfy the Pauli Principle.
Aligned np coupling: $\Psi_{\text {G.s. }}=\left[\left(\left\{\operatorname{vg}_{9 / 2}{ }^{-1} \times \pi \mathrm{gg}_{9 / 2}{ }^{-1}\right\}_{9+}\right)^{2}\right]_{0_{+}} \mathrm{x}\left[\left(\left\{\mathrm{vg}_{9 / 2}{ }^{-1} \mathrm{x} \pi \mathrm{mg}_{9 / 2}{ }^{-1}\right\}_{7_{7}+}\right)^{2}\right]_{0_{+}}$ - Similar results confirmed for ${ }^{96} \mathrm{Cd}$ - S Zerguine and P Van Isacker, PRC 83, 064311 (2011)

Evidence for isoscalar np interaction

Effect of isoscalar np interaction at $N=Z$

Calculations done in several model spaces,iie., Og9/2, $0 g 9 / 2-1 p 1 / 2$ and $0 g 9 / 2-1 p 1 / 2-0 f 5 / 2-1 p 3 / 2$ which all give similar results . Int. parameters determined to reproduce exp energies in ${ }^{94,95} \mathrm{Pd},{ }^{93,94} \mathrm{Rh}$

Isomers in $\mathrm{N} \cong \mathrm{Z}$ nuclei below ${ }^{100} \mathrm{Sn}$

Provide excellent tests of shell model interactions

Isomers in $\mathbf{N} \cong \mathbb{Z}$ nuclei below ${ }^{100} \mathbf{S n}$

Isomers in $\mathbf{N} \cong \mathbb{Z}$ nuclei below ${ }^{100} \mathrm{Sn}$

Isomers in ${ }^{96} \mathrm{Ag}$

Isomers in ${ }^{96} \mathbf{A g}$

* GF interaction: model space: $\pi v\left(g_{9 / 2}, p_{1 / 2}\right)$
* FPG space improves position of $10^{+}, 11^{+}$and 13 - levels, also $\tau_{1 / 2}$ and γ decays (E3 and M2) of new 100 μ s isomer requires inclusion of $p_{3 / 2}$ and $f_{5 / 2}$ orbitals to calc $B(E 3), B(M 2)$'s

fpg: GF + SNA
 $\pi \nu 1 p-1 h$ excitation
 from $f_{5 / 2}$ and $p_{3 / 2}$
 TBME from OXBASH package (SNA+GF) and SPE tuned to ${ }^{100}$ Sn

$J{ }_{i} \quad J^{\pi_{f}} \quad \sigma L$	$B(\sigma \lambda)$ W.u.		
$\begin{array}{rrrr}13 & 11^{+} & \text {M2 } \\ & & \text { E3 }\end{array}$	9.6(14) $\times 10^{-5}$		3.6×10^{-5}
	0.62(9)		0.53
10+ E3	0.145(17)		0.057
$15^{+} 13^{+} \mathrm{E}^{\text {a }}$	2.45(6)	2.99	2.93
Electric trans calc with p / n eff. Charges of (1.5/0.5)e $\mathrm{a}=$ assuming $\mathrm{E}_{\gamma}=50 \mathrm{keV}$			

Core excited isomer in ${ }^{96} \mathrm{Ag}$

P Boutachkov et al., PRC 84, 044311 (2011) GDS

LSSM calculations with $5 p-5 h, t=5$, excitations Antoine+Nathan codes

$J \pi_{i} \quad J_{f}{ }_{f} \quad \sigma L$	$B(\sigma \lambda)$ W.u.	
	Expt	GDS
$19^{+} 17^{+}$E2	4.7(10)	3.6
$15^{+} \mathrm{E} 4$	0.9(6)	0.7
p / n eff. Charges of (1.5/0.5)e		

Incorrect order of 17+, 19+ may result from incorrect details of the interaction. Fine

$$
470 \longrightarrow\left(9^{+}\right)
$$

$545=9^{+}$

$$
0 \prod_{\operatorname{EXP}}\left(8^{+}\right)
$$

$0 \underset{\text { GDS } t=5}{ } 8^{+}$

Similar effect noted for $10^{+}, 12^{+}$states in ${ }^{98} \mathrm{Cd}$

Evidence for $\mathrm{T}=0 \mathrm{np}$ Int. in ${ }^{96} \mathrm{Cd}$

 high-spin- Long standing SM predictions of the presence of $16{ }^{+}$and $25 / 2^{+}$spin-gap isomers in ${ }^{96,97} \mathrm{Cd}$, for example:

K Ogawa, Phys Rev C 28, 958 (1983)

- Spin gap isomer results from extra BE due to the large attractive $n-p$ interaction for maximally aligned hole-hole configs.

Existence of isomer provides evidence for the importance of the $\mathrm{T}=0 \mathrm{np}$ interaction at

Cf ${ }^{92}$ Pd results - B Cederwall et al., Nature 469, 68 (2011)

SM Calculations by H Grawe

Spin-gap isomer ${ }^{96} \mathrm{Cd}$

$$
\begin{aligned}
\mathrm{T}_{1 / 2}(421)=0.67 \pm 0.15 \sec , \quad \mathrm{~T}_{1 / 2}(470,1506,667)=0.29+0.11 \sec \\
-0.10
\end{aligned}
$$

B.S Nara Singh et al., PRL 107, 172502 (2011)

Spin-gap isomer ${ }^{96} \mathrm{Cd}$

Spin-gap isomer ${ }^{96} \mathrm{Cd}$

${ }^{96} \mathrm{Ag}, \mathbf{1 5}^{+}$state: $\mathbf{1 0 0 \%}$ of GT strength in $\mathrm{p}_{1 / 2}, \mathbf{g}_{9 / 2}$ model space
$B_{G F}=0.14$ with quenching factor of $\mathbf{0 . 6}$ (Herndland Brown NPA627, 35 (1997))
$B_{\text {exp }}=\left[3860(18) * I_{\beta}\right] /\left(f T_{1 / 2}\right)=0.19+0.08$
with $\mathrm{T}_{1 / 2}=0.29$ secs

Spin-gap isomer ${ }^{96} \mathrm{Cd}$ - LSSM Calcs with Core excitations

GT strength is fragmented, due to the mixed nature of the states

High statistics are needed to obtain the $B(G T)$ distribution

Summary

- Mapping of collectivity along the $N=Z$ line is underway, but still lots to do:
\Rightarrow lifetime measurements/ mapping $B(E 2)$ values
\Rightarrow role of shape co-existence in the mid-mass A~ 66-84 region.
- Evidence that isoscalar np coupling is important at both low and high spin for $N=Z$ nuclei close to ${ }^{100}$ Sn. But no direct evidence yet of $T=0 \mathrm{np}$ (BCS type) pair condensate.
\Rightarrow Need to measure lifetimes of low-lying states in A~90 N=Z nuclei and \Rightarrow extend/ identify yrast bands in nuclei such as ${ }^{92} \mathrm{Pd} /{ }^{96} \mathrm{Cd}$ as well as investigate T=0,1 states in ${ }^{90} \mathrm{Rh},{ }^{94} \mathrm{Ag},{ }^{98} \mathrm{In}$ etc.
- Several isomers/ γ rays observed in N~Z mass 90 nuclei in recent years, including core-excited states -
\Rightarrow these data provide stringent tests of model spaces and shell model interactions, but
\Rightarrow more data required to help tune the interactions used in SM calculations

Significant interest to try and extend studies to $\mathbf{N}<\mathbf{Z}$ nuclei to investigate isomers/ isospin symmetry/ effects of weak binding in the mass 60-100 region.

