A fully microscopic study of multinucleon transfer processes in ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$:

 An application of the time-dependent Hartree-Fock theory
Kazuyuki Sekizawa

(Univ. Tsukuba, Japan)

In collaboration with
Kazuhiro Yabana
Graduate School of Pure and Applied Sciences, Univ. Tsukuba
Center for Computational Sciences, Univ. Tsukuba

INTRODUCTION: Interests for multinucleon transfer reactions

\checkmark As an interesting quantum dynamics

Fundamental interest

Multinucleon transfer reaction $=\underline{\text { A non-equilibrium quantum transport phenomenon }}$

Static properties
Nuclear shell structure and binding energies, shapes, N/Z ratios, ...

Dynamical effects

Quantum tunneling, neck formation, matching of Q-values and momenta, ...
\checkmark Both static properties and time-dependent dynamics are related to its reaction mechanisms
\checkmark As a mean to produce unstable nuclei

Experimental interest

$>$ KISS project (2010-2015) (KISS: KEK Isotope Separation System)
cf. S.C. Jeong et al., KEK Report 2010-2 (2010)

INTRODUCTION: Interests for multinucleon transfer reactions

cf. S.C. Jeong et al., KEK Report 2010-2 (2010)
KISS project (2010-2015) (KISS: KEK Isotope Separation System)
Aim: To measure lifetime of neutron-rich unstable nuclei with $A \sim 200$ along the neutron magic number $N=126$

$$
{ }^{A} \mathrm{Xe}+{ }^{198} \mathrm{Pt} \text { reaction }
$$

Figure is taken from Rept. Prog. Phys. 70, 1525 (2007)

INTRODUCTION: Interests for multinucleon transfer reactions

\checkmark As an interesting quantum dynamics

Fundamental interest

Multinucleon transfer reaction $=\underline{\text { A non-equilibrium quantum transport phenomenon }}$

Static properties
Nuclear shell structure and binding energies, shapes, N / Z ratios, ...

Dynamical effects

Quantum tunneling, neck formation, matching of Q-values and momenta, ...
\checkmark Both static properties and time-dependent dynamics are related to its reaction mechanisms
\checkmark As a mean to produce unstable nuclei
Experimental interest
$>$ KISS project (2010-2015) (KISS: KEK Isotope Separation System) cf. S.C. Jeong et al., KEK Report 2010-2 (2010)

It is highly desired to develop a fully microscopic description

 with minimum assumptions on the dynamics
Outline

1. Introduction

2. TDHF calculations for multinucleon transfer processes in ${ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$ reaction
3. A systematic TDHF calculation of ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction
4. Summary and Perspective

Outline

1. Introduction

2. TDHF calculations for multinucleon transfer processes in ${ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$ reaction
3. A systematic TDHF calculation of ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction
4. Summary and Perspective

Results of the TDHF calculation: ${ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$ at $E_{\mathrm{lab}}=170 \mathrm{MeV}$

K. Sekizawa and K. Yabana, arXiv:1303.0552 [nucl-th]

3D-grid: $60 \times 60 \times 26$ ($48 \mathrm{fm} \times 48 \mathrm{fm} \times 20.8 \mathrm{fm}$), Mesh size: 0.8 fm
Skyrme force: SLy5, $\Delta t .0 .2 \mathrm{fm} / \mathrm{c}$, Initial separation distance: 16 fm
Calculated impact parameter: $0 \leqq b \leqq 10 \mathrm{fm}$
Fusion reactions ($b \leqq 3.69 \mathrm{fm}$), Binary reactions ($b \geqq 3.70 \mathrm{fm}$)
Density evolution obtained from the TDHF calculation
$b=3.69 \mathrm{fm}$

$b=3.70 \mathrm{fm}$

$b=4.50 \mathrm{fm}$

Results of the TDHF calculation: ${ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$ at $E_{\mathrm{lab}}=170 \mathrm{MeV}$

K. Sekizawa and K. Yabana, arXiv:1303.0552 [nucl-th]

3D-grid: $60 \times 60 \times 26$ ($48 \mathrm{fm} \times 48 \mathrm{fm} \times 20.8 \mathrm{fm}$), Mesh size: 0.8 fm
Skyrme force: SLy5, $\Delta t .0 .2 \mathrm{fm} / \mathrm{c}$, Initial separation distance: 16 fm
Calculated impact parameter: $0 \leqq b \leqq 10 \mathrm{fm}$
Fusion reactions ($b \leqq 3.69 \mathrm{fm}$), Binary reactions ($b \geqq 3.70 \mathrm{fm}$)

Density evolution obtained from the TDHF calculation

$b=3.69 \mathrm{fm}$

$b=3.70 \mathrm{fm}$

$b=4.50 \mathrm{fm}$

Results of the TDHF calculation: ${ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$ at $E_{\mathrm{lab}}=170 \mathrm{MeV}$

K. Sekizawa and K. Yabana, arXiv:1303.0552 [nucl-th]

3D-grid: $60 \times 60 \times 26$ ($48 \mathrm{fm} \times 48 \mathrm{fm} \times 20.8 \mathrm{fm}$), Mesh size: 0.8 fm
Skyrme force: SLy5, $\Delta t .0 .2 \mathrm{fm} / \mathrm{c}$, Initial separation distance: 16 fm
Calculated impact parameter: $0 \leqq b \leqq 10 \mathrm{fm}$
Fusion reactions ($b \leqq 3.69 \mathrm{fm}$), Binary reactions ($b \geqq 3.70 \mathrm{fm}$)

Density evolution obtained from the TDHF calculation

$b=3.69 \mathrm{fm}$

$b=3.70 \mathrm{fm}$

$b=4.50 \mathrm{fm}$

Results of the TDHF calculation: ${ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$ at $E_{\mathrm{lab}}=170 \mathrm{MeV}$

K. Sekizawa and K. Yabana, arXiv:1303.0552 [nucl-th]

3D-grid: $60 \times 60 \times 26$ ($48 \mathrm{fm} \times 48 \mathrm{fm} \times 20.8 \mathrm{fm}$), Mesh size: 0.8 fm
Skyrme force: SLy5, $\Delta t .0 .2 \mathrm{fm} / \mathrm{c}$, Initial separation distance: 16 fm
Calculated impact parameter: $0 \leqq b \leqq 10 \mathrm{fm}$
Fusion reactions ($b \leqq 3.69 \mathrm{fm}$), Binary reactions ($b \geqq 3.70 \mathrm{fm}$)

Density evolution obtained from the TDHF calculation

$b=3.69 \mathrm{fm}$

$b=3.70 \mathrm{fm}$

$b=4.50 \mathrm{fm}$

Results of the TDHF calculation: ${ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$ at $E_{\mathrm{lab}}=170 \mathrm{MeV}$

K. Sekizawa and K. Yabana, arXiv:1303.0552 [nucl-th]

3D-grid: $60 \times 60 \times 26$ ($48 \mathrm{fm} \times 48 \mathrm{fm} \times 20.8 \mathrm{fm}$), Mesh size: 0.8 fm
Skyrme force: SLy5, $\Delta t .0 .2 \mathrm{fm} / \mathrm{c}$, Initial separation distance: 16 fm
Calculated impact parameter: $0 \leqq b \leqq 10 \mathrm{fm}$
Fusion reactions ($b \leqq 3.69 \mathrm{fm}$), Binary reactions ($b \geqq 3.70 \mathrm{fm}$)
Density evolution obtained from the TDHF calculation
$b=3.69 \mathrm{fm}$

$$
b=3.70 \mathrm{fm}
$$

$b=4.50 \mathrm{fm}$

How to calculate the transfer probability

Particle number projection method

C. Simenel, Phys. Rev. Lett. 105, 192701 (2010)
[\checkmark Particle number projection operator

$$
\hat{P}_{n}=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta e^{i\left(n-\hat{N}_{\mathrm{P}}\right) \theta}
$$

\hat{N}_{P} : Number operator of the spatial region V_{P}

$$
\hat{N}_{\mathrm{P}}=\int_{\mathrm{V}_{\mathrm{P}}} d^{3} r \sum_{i=1}^{N_{\mathrm{P}}+N_{\mathrm{T}}} \delta\left(\boldsymbol{r}-\boldsymbol{r}_{i}\right)
$$

$N=N_{\mathrm{P}}+N_{\mathrm{T}}$: Total number of nucleons

Probability $P_{n}: n$ nucleons are in the V_{P} and $N-n$ nucleons are in the V_{T}

$$
\begin{aligned}
P_{n} & =\langle\Phi| \hat{P}_{n}|\Phi\rangle \\
& =\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta e^{i n \theta} \operatorname{det}\left\{\left\langle\phi_{i} \mid \phi_{j}\right\rangle_{\mathrm{V}_{\mathrm{T}}}+e^{-i \theta}\left\langle\phi_{i} \mid \phi_{j}\right\rangle_{\mathrm{V}_{\mathrm{P}}}\right\}
\end{aligned}
$$

Slater determinant
$\Phi\left(\boldsymbol{x}_{1}, \cdots, \boldsymbol{x}_{N}\right)=\frac{1}{\sqrt{N!}} \operatorname{det}\left\{\phi_{i}\left(\boldsymbol{x}_{j}\right)\right\}$

Single-particle w.f.

$$
\begin{array}{r}
\phi_{i}(\boldsymbol{x}) \equiv \phi_{i}(\boldsymbol{r}, \sigma) \\
i=1, \cdots, N_{\mathrm{P}}+N_{\mathrm{T}}
\end{array}
$$

Overlap integral in respective regions

$$
\begin{array}{r}
\left\langle\phi_{i} \mid \phi_{j}\right\rangle_{\tau}=\int_{\tau} d^{3} x \phi_{i}^{*}(\boldsymbol{x}) \phi_{j}(\boldsymbol{x}) \\
\quad \tau=\mathrm{V}_{\mathrm{P}} \text { or } \mathrm{V}_{\mathrm{T}}
\end{array}
$$

Results of the TDHF calculation: ${ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$ at $E_{\mathrm{lab}}=170 \mathrm{MeV}$

K. Sekizawa and K. Yabana, arXiv:1303.0552 [nucl-th]

Transfer probabilities

$$
P_{n}=\langle\Phi| \hat{P}_{n}|\Phi\rangle=\frac{1}{2 \pi} \int_{0}^{2 \pi} d \theta e^{i n \theta} \operatorname{det}\left\{\left\langle\phi_{i} \mid \phi_{j}\right\rangle_{\mathrm{V}_{\mathrm{T}}}+e^{-i \theta}\left\langle\phi_{i} \mid \phi_{j}\right\rangle_{\mathrm{V}_{\mathrm{P}}}\right\}: \text { The projection method }
$$

\checkmark Nucleons are transferred towards the directions of the charge equilibrium.
\checkmark Transfer probabilities of several nucleons become sizable just outside the fusion region.

Results of the TDHF calculation: ${ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$ at $E_{\mathrm{lab}}=170 \mathrm{MeV}$

K. Sekizawa and K. Yabana, arXiv:1303.0552 [nucl-th]

Transfer cross sections

- Horizontal axis: Number of neutrons of lighter (${ }^{40} \mathrm{Ca}$-like) fragment

$$
\sigma_{\mathrm{tr}}(Z, N)=2 \pi \int_{b_{\min }}^{\infty} b P_{Z}^{(p)}(b) P_{N}^{(n)}(b) d b
$$

- Exp.: L. Corradi et al., Phys. Rev. C 54, 201 (1996)
- Labels "($x \mathrm{p}$)", $x=+1, \ldots,-6$: Number of protons added to (+)/removed from (-) ${ }^{40} \mathrm{Ca}$

Outline

1. Introduction

2. TDHF calculations for multinucleon transfer processes in ${ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$ reaction

3. A systematic TDHF calculation of ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction
4. Summary and Perspective

Key points

Aim of the calculation

\checkmark To predict a preferable condition to produce neutron-rich unstable nuclei with $A \sim 200$ along the $N=126$ line

KISS Project (2010~2015)

What we have done

\checkmark TDHF calculations for ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction at various impact parameters and incident energies $5,6,7,8,9$, and $10 \mathrm{MeV} / A(680,816,952,1088,1224$, and 1360 MeV , respectively) $b=0,1,2, \ldots, 12 \mathrm{fm}$

3D-grid: $70 \times 70 \times 30(56 \mathrm{fm} \times 56 \mathrm{fm} \times 26 \mathrm{fm}$), Mesh size: 0.8 fm Skyrme force: SLy5, $\Delta t: 0.2 \mathrm{fm} / \mathrm{c}$, Initial separation distance: 25 fm

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

Primary production cross sections of heavier $\left({ }^{198} \mathrm{Pt}\right.$-like) fragment

※ Note: We have not yet taken into account the particle evaporation effect.

$$
\sigma_{\operatorname{tr}}(Z, N)=2 \pi \int_{b_{\min }}^{\infty} b P_{Z}^{(p)}(b) P_{N}^{(n)}(b) d b: \text { The cross section } \quad \begin{aligned}
& { }^{136} \mathrm{Xe}(Z=54, N=82, N / Z \sim 1.52) \\
& { }^{198} \mathrm{Pt}(Z=78, N=120, N / Z \sim 1.54)
\end{aligned}
$$

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

Primary production cross sections of heavier $\left({ }^{198} \mathrm{Pt}\right.$-like) fragment

※ Note: We have not yet taken into account the particle evaporation effect.

$$
\sigma_{\operatorname{tr}}(Z, N)=2 \pi \int_{b_{\min }}^{\infty} b P_{Z}^{(p)}(b) P_{N}^{(n)}(b) d b: \text { The cross section } \quad \begin{aligned}
& { }^{136} \mathrm{Xe}(Z=54, N=82, N / Z \sim 1.52) \\
& { }^{198} \mathrm{Pt}(Z=78, N=120, N / Z \sim 1.54)
\end{aligned}
$$

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

Primary production cross sections of heavier $\left({ }^{198} \mathrm{Pt}\right.$-like) fragment

※ Note: We have not yet taken into account the particle evaporation effect.

$$
\sigma_{\operatorname{tr}}(Z, N)=2 \pi \int_{b_{\min }}^{\infty} b P_{Z}^{(p)}(b) P_{N}^{(n)}(b) d b: \text { The cross section } \quad \begin{aligned}
& { }^{136} \mathrm{Xe}(Z=54, N=82, N / Z \sim 1.52) \\
& { }^{198} \mathrm{Pt}(Z=78, N=120, N / Z \sim 1.54)
\end{aligned}
$$

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

Primary production cross sections of heavier $\left({ }^{198} \mathrm{Pt}\right.$-like) fragment

※ Note: We have not yet taken into account the particle evaporation effect.

$$
\sigma_{\operatorname{tr}}(Z, N)=2 \pi \int_{b_{\min }}^{\infty} b P_{Z}^{(p)}(b) P_{N}^{(n)}(b) d b: \text { The cross section } \quad \begin{aligned}
& { }^{136} \mathrm{Xe}(Z=54, N=82, N / Z \sim 1.52) \\
& { }^{198} \mathrm{Pt}(Z=78, N=120, N / Z \sim 1.54)
\end{aligned}
$$

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

Primary production cross sections of heavier $\left({ }^{198} \mathrm{Pt}\right.$-like) fragment

※ Note: We have not yet taken into account the particle evaporation effect.

$$
\sigma_{\operatorname{tr}}(Z, N)=2 \pi \int_{b_{\min }}^{\infty} b P_{Z}^{(p)}(b) P_{N}^{(n)}(b) d b: \text { The cross section } \quad \begin{aligned}
& { }^{136} \mathrm{Xe}(Z=54, N=82, N / Z \sim 1.52) \\
& { }^{198} \mathrm{Pt}(Z=78, N=120, N / Z \sim 1.54)
\end{aligned}
$$

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

Primary production cross sections of heavier $\left({ }^{198} \mathrm{Pt}\right.$-like) fragment

※ Note: We have not yet taken into account the particle evaporation effect.

$$
\sigma_{\operatorname{tr}}(Z, N)=2 \pi \int_{b_{\min }}^{\infty} b P_{Z}^{(p)}(b) P_{N}^{(n)}(b) d b: \text { The cross section } \quad \begin{aligned}
& { }^{136} \mathrm{Xe}(Z=54, N=82, N / Z \sim 1.52) \\
& { }^{198} \mathrm{Pt}(Z=78, N=120, N / Z \sim 1.54)
\end{aligned}
$$

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

Cross sections extend wider and wider, as the incident energy increases.

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

\checkmark Average number of nucleons in heavier fragment ($10 \mathrm{MeV} / A$)

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

\checkmark Average number of nucleons in heavier fragment ($10 \mathrm{MeV} / A$)

$E_{\text {lab }}=10 \mathrm{MeV} / A, b=3 \mathrm{fm}$

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

\checkmark Average number of nucleons in heavier fragment ($10 \mathrm{MeV} / A$)

$E_{\text {lab }}=10 \mathrm{MeV} / A, b=3 \mathrm{fm}$

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

\checkmark Average number of nucleons in heavier fragment ($10 \mathrm{MeV} / A$)

$E_{\text {lab }}=10 \mathrm{MeV} / A, b=3 \mathrm{fm}$

\checkmark After forming very thick neck, quasi-fission process proceeds to produce mass-symmetric fragments

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

\checkmark Average number of nucleons in heavier fragment ($10 \mathrm{MeV} / A$)

$E_{\mathrm{lab}}=10 \mathrm{MeV} / A, b=5 \mathrm{fm}$

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

\checkmark Average number of nucleons in heavier fragment ($10 \mathrm{MeV} / A$)

$E_{\mathrm{lab}}=10 \mathrm{MeV} / A, b=5 \mathrm{fm}$

Results of the TDHF calculation: ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction

\checkmark Average number of nucleons in heavier fragment ($10 \mathrm{MeV} / A$)

$E_{\text {lab }}=10 \mathrm{MeV} / A, b=5 \mathrm{fm}$

\checkmark Inverse quasi-fission process occur, may be due to the shell effect of ${ }^{208} \mathrm{~Pb}$ in the exit channel.

Summary and Perspective

Summary

$\boldsymbol{\sim}$ I showed how to calculate nucleon transfer probabilities from the TDHF wave function. (Projection method: C. Simenel, PRL105(2010)192701)
$\boldsymbol{\checkmark}$ I reviewed results of the TDHF calculation for ${ }^{40} \mathrm{Ca}+{ }^{124} \mathrm{Sn}$ reaction. (K. Sekizawa and K. Yabana, arXiv:1303.0552 [nucl-th])
$\boldsymbol{\sim}$ I presented a current status of a systematic THDF calculation for ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction.
\checkmark Production cross sections depend much on the incident energy, corresponding appearance/disappearance of (inverse) quasi-fission processes.

Perspective

\checkmark Perform ${ }^{136} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction at more small impact parameter step, $b=0.5,1.5, \ldots$.
\checkmark Evaluate particle evaporation effects.
\checkmark Conduct similar calculations with neutron-rich projectile, such as ${ }^{144} \mathrm{Xe}+{ }^{198} \mathrm{Pt}$ reaction.

Thank you for your attention.

