Multipurpose application of the J-PARC Transmutation Experimental Facility

10th ASRC International Workshop
'Nuclear Fission and Decay of Exotic Nuclei''
2013.3.21 JAEA Nuclear Science Research Center

J-PARC Center, Transmutation Section Toshinobu Sasa

J-PARC: Japan Proton Accelerator Research Complex

Science Goals at J-PARC

A Brief History of J-PARC

2000 Aug. Pre-Review

2003 Dec. Gov't Review 1 2007 Jun. Gov't Review 2

2010 Oct. Upgrade Plan included in the Master Plan of Japan Science Council and the Roadmap of MEXT

> Ex. J-PARC Director, Prof. Nagamiya restarted J-PARC accelerators after recovery from the earthquake.

2012 Jun. Gov't Review 3

(next 5 – years plan) 2012

Operation for users was resumed

2012.1.24

Damages by Great East Japan Earthquake

10th ASRC Int. Workshop "Nuclear Fission & Decay of Exotic Nuclei"

J-P/IRC Pulse Neutrons Performance at J-PARC 18×10¹² No. of neutrons/pulse Unit: neutrons/(sr•pulse) Future 1.4 MW 2nd Target 48 kW Now 300 kW 1 MW Now 1 MW Future 5.4 × 10¹² World Record! 5.9×10¹² 4.2×10¹² 4.0×10¹² J-PARC SNS ISIS-2 Pulse frequency 25Hz 60Hz 10 Hz 2013/3/21 10th ASRC Int. Workshop "Nuclear Fission & Decay of Exotic Nuclei" 7

Neutron Instrument Status

- 23 Neutron Beam Ports
- From academic to Industrial uses
- In operation: 18 Under construction: 3
- Constructed by
 - •KEK J-PARC MLF
 - · Ibaraki Prefecture
 - ·Kaken-hi (Gov. direct funding)
- Operation days/year 200 days/year (Goal) (176 days in 2012)
- Number of staffs including out-sourcing 150+70

Schedule for Power Upgrade

FY2013: Linac 400MeV, FY2015: RCS MW

Development of PS, FY2018: MR 0.75 MW

Interest for Transmutation in Japan

Recommendations of the Science Council of Japan as an answer to the Atomic Energy Commission's independent review request (Reported at 11.9.2012)

- Requires a fundamental review of waste disposal policy
- Manage the total amount and temporal safe storage of waste
 - Ensure Reversibility and Retrievability (Several hundred years)
 - During the SF storage, following study should be enhanced
 - Waste Transmutation
 - Safety of Fuel Storage
 - Stability of Geological Layer
- Construct a consensus building mechanism
- Take tenacious efforts to establish waste disposal site

Transmutation Experimental Facility

TEF-P:Transmutation Physics Experimental

Purpose : Reactor Physics Category : Critical Assembly Proton Power : 400MeV-10W Thermal Output : Less than 500W

TEF-T:ADS Target Test

Facility

Purpose : Material Irradiation Category : Radiation Application Proton Power : 400MeV-250kW Target Material : Lead-Bismuth

R&D Items using TEF-T

Purpose of R&D	R&D items							
loss l'actions la succession	Evaluation of soundness and lifetime of beam window							
Irradiation damage of beam window and	Duplicated irradiation damage by protons and neutrons							
structural material by	Establishment of material database for fast neutron irradiation							
protons and neutrons	Irradiation effect under stressed condition							
Compatibility of material	Liquid metal corrosion and liquid metal embitterment under proton and neutron irradiations							
with flowing liquid metal under strong irradiation condition	Compatibility of material with liquid metal as a function of temperature, velocity and oxygen concentration of the liquid							
	Affect of spallation products							
Operation and control of	Demonstration of performance of pump, flow meter, heat exchanger oxygen controller under actual liquid metal spallation target							
liquid metal spallation	Transient behavior of system at beam trip and re-start							
target system	Containment of spallation products and polonium							
	Technical issues on system operation and maintenance							

R&D items using TEF-P

Purpose of R&D	R&D items								
Validation of data & method to predict the neutronics in a fast subcritical system with a spallation source	Measurement of power distribution in sub-critical system								
	Determination of k _{eff} and effective source strength								
	Evaluation of influence of high energy neutrons								
	Evaluation of influence of target, window and void in beam duct								
	Simulation of Pb-Bi coolant								
	Feedback control of reactor power by beam intensity adjustment								
	Investigation of system behavior at beam trip and re-start								
Performance test of a hybrid system driven by an accelerator	Evaluation of temperature effect of core and target								
	Investigation of instability of system caused by subcriticality and annular arrangement of core								
	Determination of energy gain factor								
	Measurement of cross section data by TOF technique								
Transmutation	Measurement of MA transmutation rate								
performance of MA and	Measurement of MA and LLFP sample reactivity worth								
LLFP	Study of moderated region for LLFP transmutation								
	Simulation of MA-loaded nitride core								

Construction Schedule (Tentative Plan)

Fiscal Year	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Beamline TEF-T		R&D, D	esign	Cor	nstructi	on			O	peratio	n		
TEF-P		R8	D, Des	ign Li	censing	g d	(Constru	uction		0	peratio	n

- The construction of Beam line and TEF-T will be started in 2014 and the operation with 1/4 beam power will be started in 2017
- To start the construction of TEF-P in 2017, just after the completion of TEF-T, a few years of licensing activities should be started in 2015

Construction Budget (Tentative Plan)

Year	Cost (M\$)												
	Sum	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
R&D	8.9	1.0	2.1	2.9	2.9								
ADS-BT	17.3			8.6	8.7								
TEF-T	64.1			22.5	22.6	19.0							
TEF-P	129.4					12.6	29.2	29.2	29.2	29.2			
Total	219.7	1.0	2.1	34.0	34.2	31.6	29.2	29.2	29.2	29.2			

- Budget for 2013 is not directly related to construction but it includes
 - 1) TEF design,
 - 2) Construction of mockup for Pb-Bi spallation target loop,
 - 3) Laser source preparation, and
 - 4) Survey for MA fuel preparation

TEF-MYRRHA Joint Roadmap to Accelerate Establishment of ADS Transmutation

Design of Target Head - Concept

Design of Target Head - Window temp.

- Max. temp : 458 °C at window center
- Min. temp : 336 °C at coolant inlet edge

Design of Target Head - Stress Analysis

- Pb-Bi flow amount : 1 litter/sec
- Allowable Operation Condition : Lower than 400MeV 30µA/cm²

TEF-T Pb-Bi Spallation Target

Sample Irradiation Amount

- Higher irradiation amount can be obtained by increasing beam density
- To simulate full scale ADS window, it requires 3-5 cycles of full power irradiation

User Communities:

Multipurpose Utilization of TEF-T

- No proton/neutron irradiation fields exists in J-PARC
 - Material Irradiation ADS beam window
 - RI production Stable Supply for Medical/Industrial Use
 - Advanced Physics Ultra-cold Neutron, Short-lived nuclei beam

<u>//J-P/IRC</u>

Neutron Field around Target

10¹³ of fast neutrons [1-10% of JOYO(100MW_{th}) reactor]

<u> //J-P/IRC</u>

Workshop for Multipurpose Use of TEF-T

- First workshop for multipurpose use of TEF-T has been held at 18th March, 2013
- About 90 persons from Research Institutes, Universities and Companies were gathered
- Agreed to launch user community for TEF

Summary

Transmutation Experimental Facility

- Facilities for structural material irradiation (TEF-T, 400MeV-250kW_b) and reactor physics (TEF-P 400MeV-10W_b)
- Construction Schedule
 - Larger-scale R&D will be planned to start in 2013
 - TEF-T will be built first and TEF-P will be constructed afterword
 - Licensing procedures for TEF-P construction will be processed simultaneously with TEF-T construction

Activities for TEF construction

- Two buildings for reactor and target will be constructed
- Low power beam extraction mechanism will also installed
- Cooperative work with Accelerator team, Mercury target team, Radiation Safety team and Building construction division
- Spallation Target design and analysis

User Application

- J-PARC user's committee
 - Proposals to use TEF-T as a multipurpose proton/neutron source
 - Around 10¹³ n/cm²/s Fast Neutron Irradiation Field
 - Multipurpose proton beam line is now under discussion