Decay studies with pure beams of ²³⁸U fission products at the HRIBF

Krzysztof P. Rykaczewski Physics Division, Oak Ridge National Laboratory Oak Ridge, Tennessee

> powerful state-of-art ISOL facility offers unique and important research opportunities

> > even in the "RIKEN era" !

MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

hribf among motivations of the HRIBF decay studies of fission products :

- understanding the evolution of nuclear structure
- -- single-particle levels around shell gaps
- -- beta strength function related to the structure of parent and daughter states
- beta-decay data for the analysis of post r-process isotopic distributions and nuclear fuel cycle
- -- half-lives
- -- properties of beta-delayed neutron emission
- -- decay heat
- -- antineutrino energy spectra (deduced from true β-transition probabilities)
- -- low-energy states, isomers ...

HRIBF based decay studies of fission products substantially contributed to our understanding of neutron-rich nuclei

nribf = Holifield Radioactive Ion Beam Facility at Oak Ridge (1996 - 2012)

J.R. Beene et al., J. Phys. G: Nucl. Part. Phys. 38, 024002, 2010

Total ion energy

A variety of beam purification methods

IA	IIA	Ш	IB IN	/B \	/B \	/IB V	/IIB	\	√	-	IB	IIB	IIIA	IVA	VA	VIA		A VIII.	A										
н																		He											
Li	Be Befractory elements								_				В	с	N	0	F	Ne											
Na	Mg	Refractory elements						5	-			AI	Si	Р	S	CI	Ar												
к	Ca]	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr											
Rb	Sr		Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	1	Xe											
Cs	Ba	*	Lu	Hf	Ta	w	Re	Os	lr	Pt	Au	Hg	ті	Pb	Bi	Ро	At	Rn											
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	112	113	114	115	116	117	118				S	sel	ec	;τ/\	/e			
*	Iaser ionization																												
* Lanthanides La Ce Pr Nd Pm Sm Provided in 1997 Beller (Ten Yell)]																				
	Actinides Ac In Pa U Np Pu					Pu	н	7																	He				
Magnetic separation Sulfide transpo					Li	Be												В	С	N	0	F	Ne						
Observed as 2+ Chloride transp					Na	ι <u>Μ</u> ε	g	⊢	R	efrac	ctory	eler	nents	3	-			AI	Si	Р	S	CI	Ar						
					к	Ca	1	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr						
	two-stage magnet				Rb	Sr	·	Y	Zr	Nb	Mo	Тс	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Те	Т	Xe						
fı	from molecular beams				Cs	Ba	*	Lu	Hf	Ta	w	Re	Os	lr	Pt	Au	Hg	ТΙ	РЬ	Bi	Ро	At	Rn						
	to nure "nominal m				Fr	Ra	. **	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	112	113	114	115	116	117	118						
			y y n	anl		n0		34-8	666		-																		
example. new ***Ge				*	Lant	hanio	des	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	ТЬ	Dy	Но	Er	Tm	Yb								
				*	^{⊭∗} Ac	tinid	es	Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No								
							Done at ORNL Done at other facilities										R												

Detectors for beta decay studies

CARDS β - γ at LeRIBSS

VANDLE n-TOF array at LeRIBSS

^{3Hen array after} Cobert Grzywacz, UTK ray at LeRIBSS

850 liters of ³He at 10 atm

nearly 80% efficient and segmented ³Hen neutron counter

ORNL, UTK LSU , Mississippi UNIRIB

850 liters of ³He at 10 atm

HRIBF, Long-counter, and NERO Neutron Efficiency

Detectors for beta decay studies

2200 pounds of Nal(TI) - Modular Total Absorption Spectrometer (MTAS) and its 12,000 pound shielding

La 137	La 138	La 139	L a 140	La 141	La 142	La 143
^{60 ky}	^{0.09}	_{99.91}	1.68 d	3.92 h	_{92.6 m}	14.3 m
Ba 136	Ba 137	Ba 138	Ba 139	Ba 140	Ba 141	Ba 142
_{7.85}	11.23	_{71.7}	83.06 m	12.75 d	18.27 m	10.7 m
Cs 135	Cs 136	Cs 137	Cs 138	Cs 139	Cs 140	Cs 141
2.3 My	13.16 d	30.17 y	32.2 m	9.27 m	63.7 s	24.94 s
Xe 134	Xe 135	Xe 136	Xe 137	Xe 138	Xe 139	Xe 140
10.44	9.10 h	8.87	3.83 m	14.08 m	^{39.68 s}	13.6 s
I 133	l 134	I 135	I 136	l 137	I 138	I 139
20.8 h	^{52 m}	6.61 h	^{84 s}	24.2 s	6.4 s	2.29 s
Te 132	Te 133	Te 134	Te 135	Te 136	Te 137	Te 138
3.2 d	12.5 m	41.8 m	18.6 s	17.5 s	2.49 s	1.4 s

Decays studied at HRIBF Tandem-OLTF-MTAS

are marked by yellow squares. Labels "1" and "2" indicate the priority for decay heat measurements established by the Nuclear Energy Agency (NEA) in 2007

Beta decay of very neutron-rich nuclei is very rich in interesting features

Beta-delayed neutron emission: counting identified ions — absolute branching ratios

HRIBF results pointed to much higher β-delayed neutron branching ratios in comparison to earlier measurements and calculations

see, e.g., Pfeiffer, Kratz, Moeller (PKM 2002) Progress in Nucl. Energy, 41, 5 (2002)

all βn-precursors given in this plot have T_{1/2} < 1 s

J. Winger et al., PRL 102, 142501 (2009) and PRC 80, 054304,2009; PRC 81,044303,2010; PRC 82, 064314 (2010); PRC 83, 014322 (2011); PRC 86, 024307,2012

similar conclusions: P. Hosmer, H. Schatz et al., PR C82, 025806, 2010

Delayed Neutron Yield following ²³⁵U fission

from Ian C. Gauld, ORNL Reactor Science Group (2010)

Example of MTAS results – ¹³⁹Xe decay (A. Fijałkowska et al., ND2013) (¹³⁹Xe ~5% cumulative fission yield for n_{th} + ²³⁵U)

OAK RIDGE NATIONAL LABORATORY

Examples of MTAS results (M. Karny et al., ND2013) ENDSF decay scheme of 89Kr includes 57 levels and 288 *y*-lines

Y88	Y89	Y90	Y91	Y92	Y93	Y94	Y95
106.65 d		64.00 h	58.51 d	3.54 h	10.18 h	18.7 m	10.3 m
Sr87	Sr88	Sr89	Sr90	Sr91	Sr92	Sr93	Sr94
		50.53 d	28.79 y	9.63 h	2.66 h	7.42 m	75.3 s
Rb86	Rb87	Rb88	Rb89	Rb90	Rb91	Rb92	Rb93
18.64 d		17.78 m	15.15 m	2 158 s	58.4 s	4 .49 s	5.84 s
Kr85	Kr86	Kr87	Kr88	Kr89	Kr90	Kr91	Kr92
10.77 y		76.3 m	2.84 h	3.15 m	32.32 s	8.57 s	1.84 s
Br84	Br85	Br86	Br87	Br88	Br89	Br90	Br91
31.80 m	2.90 m	55.1 s	55.65 s	16.36 s	4.40 s	1.91 s	541 ms
Se83	Se84	Se85	Se86	Se87	Se88	Se89	Se90
22.3 m	3.1 m	31.7 s	15.3 s	5.50 s	1.53 s	410 ms	300 ms
As82	As83	As84	As85	As86	As87	As88	As89
19.1 s	13.4 s	4.02 s	2.02 s	945 ms	610 ms	300 ms	200 ms

average γ-energy release in ⁸⁹Kr β-decay increased from 1801 keV to 2467 keV 37% effect

MTAS spectra fit reliable decay schemes ${}^{142}La \rightarrow {}^{142}Ce$, M. Wolinska-Cichocka et al., ND2013

Earlier measurement for ¹⁴²La decay was performed with Total Absorption Gamma Spectrometer TAGS [see Greenwood et al. NIM A390 (1997)]

TAGS based simulations are close to MTAS data (high-resolution data do not agree with TAGS and MTAS)

May 2010 : the Department of Energy creates the first nuclear energy innovation hub -- the **Consortium for Advanced Simulation of Light Water Reactors (CASL)** -- headquartered at Oak Ridge.

The first task will be to develop **computer models that simulate** nuclear power plant operations, forming a "virtual reactor" for the predictive simulations of light water reactors. Other tasks include using **computer models** to reduce capital and operating costs per unit of energy, safely extending the lifetime of existing U.S. reactor and reducing nuclear waste volume generated by enabling higher fuel burn-ups.

We should remember that even the very best simulations of nuclear fuel cycles require correct experimental input data. "Conquering nuclear pandemonium" KR's Viewpoint in Physics, 3, 94, 2010 (credit to A. Algora et al., PRL 105, 202501, 2010)

⁷⁹Cu decay (HRIBF LeRIBSS)

initial yields : ⁷⁹Zn ~ 10⁵ pps ⁷⁹Cu⁺ ~ 40 pps after charge exchange : ⁷⁹Zn 0.0 pps ⁷⁹Cu⁻ ~ 2 pps pure beam of ⁷⁹Cu ions → single neutron-hole states in N=49 ⁷⁹Zn

half-life of ⁷⁹Cu

K.-L. Kratz 1991 : 188(25) ms (multi βn fit) P. Hosmer 2010 : 257(+ 29,- 26) ms (ion-β) D. Miller 2013: 290(20) ms (β-γ 730 keV)

D. Miller, R Grzywacz et al., to be published

βγ spectroscopy - new beta decays

Madurga et al., PRL 109, 2012 and Mazzocchi et al., PRC 87, 2013

M. Madurga et al., Phys. Rev. Letters, 109, 112501, 2012

OAK RIDGE NATIONAL LABORATORY

Beta-delayed multi-neutron emission

Decay of N=55 ⁸⁶Ga studied with "hybrid 3Hen" at LeRIBSS in April 2012. **Pure** beams of ^{83,85,86}Ga isotopes were produced at the IRIS-2 RIB platform using **laser ion source** RILIS **Y. Liu et al., Nucl. Instr. Meth. Phys. Res. B298, 5, 2013.**

K. Miernik et al., 2013

pure beams: 100 pps of ⁸⁵Ga, ~ 1- 3 pps of ⁸⁶Ga RIKEN now ~ 0.1 pps

Summary Decay studies of fission products at the HRIBF created a lot of new and reliable data on fission products decays

High energy resolution measurements with pure beams
of known intensities (when post accelerated)
ranging-out technique and gamma-beta-conversion electron detectors
→ basic "high energy resolution" decay scheme + βn-branching ratio

2. Measurements with Modular Total Absorption Spectrometer MTAS MTAS energy spectra in segmented array \rightarrow beta strength within $\beta\gamma$ -window (decay heat)

3. Measurements involving 3Hen and VANDLE $\rightarrow \beta$ -delayed neutrons β n-intensities and β n-energy spectra /Robert Grzywacz/ \rightarrow beta strength above neutron separation energy

Combining high-res y-data, 3Hen, MTAS, VANDLE

 \rightarrow determination of a full β -strength function and its consequences \rightarrow comparison with theory and further development of modeling_

2008-2012 LeRIBSS – OLTF HRIBF campaigns

ORNL : C.J. Gross, Y. Liu, T. Mendez, K. Miernik, KR , D. Shapira, D. Stracener UT Knoxville : R. Grzywacz, K.C. Goetz, M. Madurga, D. Miller, S. Paulauskas, S. Padgett, L. Cartegni , A. Fijałkowska, M. Al-Shudifat and C.R. Bingham ORAU/ORNL : C. Jost, M. Karny, M. Wolińska-Cichocka Mississippi : J. A. Winger, S. Ilyushkin Louisiana : Ed Zganjar, B.C. Rasco UNIRIB : J.C. Batchelder , S. H. Liu Vanderbilt : N. Brewer, J.H. Hamilton, J.K. Hwang, A. Ramayya, C. Goodin Warszawa : A. Korgul , C. Mazzocchi Kraków : W. Królas IAEA: I. Darby NSCL-MSU: S. Liddick

+ VANDLE collaboration (talk by R. Grzywacz)

theoretical analysis :

I.N. Borzov (*JIHIR/Dubna/Obninsk*), K. Sieja (*Strasbourg*), *R. Surman(NY-JINA)* J. Dobaczewski (*Warszawa/Jyväskylä*), R. Grzywacz (UTK/ORNL)

