10th ASRC International Workshop "Nuclear Fission and Decay of Exotic Nuclei " Japan Atomic Energy Agency (JAEA), Tokai, Japan, 21-22 March 2013

Energy dependence of nuclear shape evolution

Jørgen Randrup, LBNL Berkeley, California

... in collaboration with Peter Möller

10th ASRC International Workshop "Nuclear Fission and Decay of Exotic Nuclei " Japan Atomic Energy Agency (JAEA), Tokai, Japan, 21-22 March 2013

Energy dependence of nuclear shape evolution

Jørgen Randrup, LBNL Berkeley, California

... in collaboration with Peter Möller

 \leftrightarrow

Langevin shape dynamics

Shape family: $\mathbf{x} = \{\chi_i\}$

Potential energy: $U(\boldsymbol{\chi}) = U(\{\chi_i\})$ Driving force: $F_i^{\text{pot}}(\boldsymbol{\chi}) = -\partial U(\boldsymbol{\chi})/\partial \chi_i$ Inertial mass tensor: $M(\boldsymbol{\chi}) = \{M_{ij}(\{\chi_k\})\}$ Kinetic energy: $K(\boldsymbol{\chi}, \dot{\boldsymbol{\chi}}) = \frac{1}{2} \sum_{ij} M_{ij}(\boldsymbol{\chi}) \dot{\chi}_i \dot{\chi}_j$ Dissipation tensor: $\gamma(\boldsymbol{\chi}) = \{\gamma_{ij}(\{\chi_k\})\}$ Friction force: $F_i^{\text{fric}}(\boldsymbol{\chi}) = -\sum_{ij}^{ij} \gamma_{ij}(\boldsymbol{\chi}) \dot{\chi}_j$

 $\mathcal{F}(\boldsymbol{\chi}, \dot{\boldsymbol{\chi}}) = \frac{1}{2} \sum \gamma_{ij}(\boldsymbol{\chi}) \dot{\chi}_i \dot{\chi}_j$

Lagrangian function: $\mathcal{L}(\boldsymbol{\chi}, \dot{\boldsymbol{\chi}}) \equiv K(\boldsymbol{\chi}, \dot{\boldsymbol{\chi}}) - U(\boldsymbol{\chi})$

Rayleigh function:

=> Langevin equation of motion:

$$\frac{d}{dt}\frac{\partial \mathcal{L}}{\partial \dot{\chi}_{i}} = \frac{\partial \mathcal{L}}{\partial \chi_{i}} - \frac{\partial \mathcal{F}}{\partial \dot{\chi}_{i}} + \Gamma_{i}$$

$$dissipation => fluctuation$$

Strongly damped nuclear shape dynamics: Brownian motion

Metropolis walk ...

... on the 5D potential energy surface:

Start at ground-state (or isomeric) minimum

Metropolis et al. (1953):

P(*A*_f) *from* ²⁴⁰*Pu** *and* ^{236,234}*U**

5D Metropolis walks

J. Randrup & P. Möller, PRL 106 (2011) 132503

Potential energy: Macroscopic-microscopic method

 $E(Z,N,\text{shape}) = E_{\text{macro}}(Z,N,\text{shape}) + E_{\text{micro}}(Z,N,\text{shape})$

Finite range
liquid drop: $E_{\text{macro}}(Z, N, \chi) = -a_{\text{vol}}(1 - \kappa_{\text{vol}}I^2)A - a_{\text{surf}}(1 - \kappa_{\text{surf}}I^2)B_1A^{2/3} + c_1\frac{Z^2}{A^{1/3}}B_3 + \dots$ Shell and
pairing: $E_{\text{micro}}(Z, N, \chi) = E_{\text{shell}}(Z, N, \chi) + E_{\text{pair}}(Z, N, \chi)$ $\prod_{i=1}^{i=$

Single-particle levels in the effective field

Dependence of $P(A_f)$ on the excitation energy: a_E

Dependence of $P(A_f)$ on the excitation energy: U_E

Potential:

$$U(\boldsymbol{\chi}) = U_{\text{macro}}(\boldsymbol{\chi}) + U_{\text{micro}}(\boldsymbol{\chi})$$

The microscopic correction to U depends on excitation energy E*

Effective potential:

$$U_E(\boldsymbol{\chi}) \equiv U_{\text{macro}}(\boldsymbol{\chi}) + e^{-[E - U(\boldsymbol{\chi})]/E_{\text{damp}}} U_{\text{micro}}(\boldsymbol{\chi}) \qquad E^*(\boldsymbol{\chi}) = E - U(\boldsymbol{\chi})$$

 $a_{
m macro}(\boldsymbol{\chi}) = rac{A}{8\,{
m MeV}}$

Effective excitation:

$$E_E^*(\boldsymbol{\chi}) \equiv E - U_E(\boldsymbol{\chi}) = E^* + \left[1 - e^{-E^*/E_{damp}}\right] U_{micro}(\boldsymbol{\chi}) = \mathcal{F}_E(\boldsymbol{\chi}) E^*$$
$$\mathcal{F}_E(\boldsymbol{\chi}) = 1 + \left[1 - e^{-[E - U(\boldsymbol{\chi})]/E_{damp}}\right] \frac{U_{micro}}{E_E(\boldsymbol{\chi})}$$

Modification factor:

$$E_E(\boldsymbol{\chi}) = 1 + \left[1 - e^{-[E - U(\boldsymbol{\chi})]/E_{damp}}\right] \frac{U_{micro}}{E - U(\boldsymbol{\chi})}$$

Statistical weight of the shape χ :

$$W_E(\boldsymbol{\chi}) \sim \rho_E(\boldsymbol{\chi}) \sim \exp(2\sqrt{a_{\text{macro}}(\boldsymbol{\chi}) \mathcal{F}_E(\boldsymbol{\chi}) [E - U(\boldsymbol{\chi})]})$$

Dependence of the statistical weight on the excitation energy

$$a_{E}(\chi) \qquad \text{Effective level-density parameter}$$
Statistical
weight:

$$W_{E}(\chi) \sim \rho_{E}(\chi) \sim \exp(2\sqrt{a_{\max cro}(\chi)} \mathcal{F}_{E}(\chi) | E - U(\chi) |)$$

$$U_{E}(\chi) \qquad \text{Effective potential}$$
Modification
factor:

$$\mathcal{F}_{E}(\chi) = 1 + \left[1 - e^{-|E - U(\chi)|/E_{\text{damp}}}\right] \frac{U_{\text{micro}}}{E - U(\chi)}$$

$$E^{*}(\chi) = E - U(\chi) \qquad \text{Excitation energy}$$
How to do Metropolis with energy dependence?

$$\delta\chi \Rightarrow \delta \ln W_{E}(\chi) = \frac{\partial \ln \rho_{E}(\chi)}{\partial E^{*}} \delta E^{*} = -\delta U(\chi)/T_{E}(\chi) \qquad \text{Change in true potential}$$

$$OBS: \qquad E^{*}(\chi) \neq a_{E}(\chi) T_{E}(\chi)^{2} \qquad \text{Change in effective potential}$$

$$\delta\chi \Rightarrow \delta \ln W_{E}(\chi) = \frac{\partial \ln \rho_{E}(\chi)}{\partial E^{*}_{E}} \delta E^{*}_{E} = -\delta U_{E}(\chi)/T_{eff}(\chi) \qquad \text{Change in effective potential}$$

$$T_{eff}(\chi) = \left[\frac{E - U_{E}(\chi)}{a_{\max cro}(\chi)}\right]^{\frac{1}{2}}$$

Determination of the shell damping energy E_{damp}

Level density:
$$ho(oldsymbol{\chi})\sim \exp(2\sqrt{(A/8\,\mathrm{MeV})[E-U_E(oldsymbol{\chi})]})$$

Effective potential: $U_E(\boldsymbol{\chi}) \equiv U_{\text{macro}}(\boldsymbol{\chi}) + e^{-[E-U(\boldsymbol{\chi})]/E_{\text{damp}}} U_{\text{micro}}(\boldsymbol{\chi})$

$P(Z_f)$ for thorium isotopes at E*=11 MeV

JR: JAEA 2013

(more will be shown by P. Möller)

P(*A_f*) for neutron-deficient mercury isotopes

P. Möller, J. Randrup, and A.J. Sierk, Phys. Rev. C85 (2012) 024306

Summary

Nuclear fission can be understood in terms of Langevin shape dynamics

The gradual erosion of microscopic effects with excitation can be included by energy-dependent potential surfaces $U_E(\chi)$

E_{damp}: adjusted

The highly dissipative nature of the shape dynamics simplifies the treatment:

Accelerations are very small => Smoluchowski: the inertial mass tensor is unimportant for the shape evolution

Large degree of equilibration => *Metropolis*: the mass distribution is rather insensitive to the dissipation tensor

Useful approximate fission fragment yields can be obtained from Metropolis walks on energy-dependent potential-energy surfaces

