Yields of fission products from 19, 32 and 44 MeV proton induced fission of ²³²Th

H. Naik^a, G.N. Kim^b, K. Kim^b, S.V. Suryanarayana^c, A. Goswami^a

a-Radiochemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India b-Department of Physics, Kyungpook National University, Daegu 702-701, Republic of Korea c-Nuclear Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India

> 10th ASRC International Workshop Nuclear Fission and Decay of Exotic Nuclei (JAEA, Tokai, Japan, 21-22 March, 2013)

ABSTRACT

The yields of various fission products in the 19-, 32- and 44-MeV proton-induced fission of ²³²Th have been experimentally determined by recoil catcher and an off-line γ -ray spectrometric technique using the BARC-TIFR Pelletron facility at India and medical cyclotron (MC-50) at (KIRAMS) Seoul, Korea. The mass-yield distributions were obtained from the fission-product yield data using charge-distribution corrections. From the mass yield distribution of present work and the literature data at various energies, the peak-tovalley (P/V) ratio was obtained in ²³²Th(p,f) and are compared with the similar data in ²³⁸U(p,f). From these data following observations were made. (i) The mass-yield distributions in the ²³²Th(p,f) reaction are triple humped unlike in the ²³⁸U(p,f), where it is double humped. (ii) The yields of fission products for A=133-134, A=138-139 and A=143-144 and their complementary products in the ²³²Th(p,f) reaction in the three energies of present work are higher than those of other fission products. This is due to the nuclear structure effect, which has been observed for the first time in the energy range of present work but not at other energies from the literature data of earlier work due to missing mass yield data for relatively short-lived fission products. (iii)The yields of symmetric products increase with excitation energy, which causes the decreasing trend of the peak-to-valley (P/V) ratio. (iv) At all excitation energies the P/V ratio in ²³²Th(p,f) reaction is lower than the ²³⁸U(p,f) reaction. However, the decrease trend of P/V ratio with excitation energy is more faster in ²³²Th(p,f) reaction than in ²³⁸U(p,f) reaction. This is due to the different type of potential energy surface in in the fissioning system ²³³Pa* (²³²Th(p,f)) compared to ²³⁹Np*(²³⁸U(p,f)).

INTRODUCTION

- Mass and charge distributions of photon-, neutron-, and proton-induced fission of preactinides and actinides are important for the understanding of the fission processes related to effect of nuclear structure and dynamics of descent from saddle to scission [1, 2].
- Mass distribution in the photon-, neutron-, and proton-induced fission of pre-actinides (e.g. W, Au, Pb, Bi) and heavy-Z actinides (e.g. Es to Lr) are symmetric in nature, whereas for medium-Z actinides (e.g. U to Cf) are asymmetric in nature.
- Mass distribution in the photon-, neutron-, and proton-induced fission of light-Z actinides (e.g. Ac, Th, Pa) are asymmetric with triple humped.
- With increase of excitation energy and Z of the actinides, mass distribution changes from asymmetric to symmetric and the effect of nuclear structure decreases.
- Photon-, neutron-, and proton-induced fission of Th and U are of more interest due to their applications in accelerated driven sub-critical system (ADSs), advanced heavy water reactor (AHWR), conventional light and heavy water reactor, and fast reactor.
- Photon-, neutron-, and proton-induced fission of ²³²Th is more interesting compared to ²³⁸U due to its different type of behavior expected from the systematic and theory, which is called as Th anomaly.

- > The yields of various fission products in the proton-induced fission of 232 Th have been experimentally determined by recoil catcher and an off-line γ -ray spectrometric technique.
- 1. 19.55-MeV proton using the 14UD BARC-TIFR Pelletron facility, India.
- 2. 32- and 44-MeV proton using the medical cyclotron (MC-50) in KIRAMS, Seoul, Korea.

BARC-TIFR Pelletron Accelerator Facility

The 19.55 MeV proton induced fission of ²³²Th was carried out by using 14UD BARC-TIFR Pelletron at Mumbai, India.

HE2

MC 50 Cyclotron Facility, KIRAMS

The 32.21 and 44.76 MeV proton induced fission of ²³²Th was carried out using medical cyclotron (MC-50) at the Korea Institute of Radiological and Medical Science (KIRAMS) in Seoul, Korea.

- The natural ²³²Th metal target having the size of 1 cm² with thickness of 0.025 mm was covered with 0.025 mm thick super pure Al foil on both side of the target to make the Al-Th-Al stack.
- In the case of MC-50 cyclotron, in between two sets of Al-Th-Al stacks, a 3.8 mm thick Al was used as energy degrader. The two Al-Th-Al stack targets and thick Al degrader were also additionally wrapped with 0.025 mm thick Al.

- 1: High-Purity Coaxial Germanium detector (HPGe), (ORTEC, Model GEM-20180-p, Serial No. 39-TP21360A);
- 2: Preamplifier (ORTEC, Model 257 P, Serial No. 501);
- 3: Amplifier (ORTEC-572);
- 4: 4-Input Multichannel Buffer, Spectrum Master-919, (ORTEC);
- 5: Computer (Maestro, GammaVision)
- 6: Bias supply (High Voltage: +2kV, -3.5 kV) (ORTEC 659)

HER Determination of Yields for Fission Products

• From the observed number of γ -rays (N_{obs}) under the photo-peak of each individual fission product, their **cumulative yields** (Y_R) relative to ¹³⁵I were determined by :

$$N_{obs}(CL/LT) = n \sigma_F(E) \Phi I_{\gamma} \varepsilon Y_R (1 - e^{-\lambda t_{irr}}) e^{-\lambda t_{cool}} (1 - e^{-\lambda CL}) / \lambda$$

where *n* is the number of target atoms $\sigma_F(E)$ is the proton induced fission cross-section of the target nuclei and Φ is the proton flux. The t_{irr} and t_{cool} are the irradiation and the cooling time, and *CL* and *LT* are the real and the live times of counting, respectively. λ is the decay constant of the isotope of interest and ε is the detection efficiency of the γ -rays in the detector system. I_{γ} is the abundance or the branching intensity of the chosen γ -rays of the reaction products.

• From the relative cumulative yields (Y_R) of the fission products, their relative masschain yields (Y_A) were determined by :

$$Y_{A} = Y_{R} / FCY, \quad FCY = \frac{EOF^{a(Z)}}{\sqrt{2}\pi\sigma_{z}^{2}} \int_{-\infty}^{Z+0.5} \exp\left[-(Z-Z_{P})^{2} / 2\sigma_{z}^{2}\right] dZ$$

where FCY is the fractional cumulative yield, Z_P is the most probable charge and σ_z is the width parameter of an isobaric yield distribution. $EOF^{a(Z)}$ is the even-odd effect with a(Z) = +1 for even-Z nuclides and -1 for odd-Z nuclides.

Determination of Detector Efficiency

HES

Uncertainties of Measurement

	Source of Uncertainty	%
(a) Random	 (I) Counting statistics (ii) Irradiation time (iii) Rate of fission (R=nσφ) 	3-4 1-1.5 5-7
	(iv) Least sqare analysis) Total (σ_R)	5-7 7.8-10.8
(b) Systematic	(i) Half-lives(ii) Gamma ray abundance(iii) Branching ratio (abundance)	1 2 2-5
	(iv) Detector efficiency(v) Precursor yields	5 4-5
	Total ($\sigma_{\rm S}$)	7-9

Yields of fission products (%) as a function of excitation energy for (a) A = 89 in the ²³²Th(*p*, *f*) and A=99 in the ²³⁸U(*p*, *f*), (b) A = 143 in the ²³²Th(*n*, *f*) and A=134 in the 238 U(*n*, *f*) and (c) *A* = 143 in the 134 in the 232 Th(γ , *f*) and A=134 in the 238 U(γ , *f*) reactions. 8 A=89 in ²³²Th(p,f) **(a)** A=99 in ²³⁸U(p,f) 6 Ī Ţ ŧ 4 • 2 -10 20 30 40 50 60 70 0 10 Fission Yields (%) $A=143 \text{ in }^{232} \text{Th}(n,f)$ **(b)** 8 A=134 in ²³⁸U(n,f) 6 -Ż 4 ¥ 2. 10 20 30 **40** 50 60 70 0 10 A=143 in 232 Th(γ ,f) (c) A=134 in 238 U(γ ,f) 8 4 6 5.0 2.5 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 **Excitation Energy (MeV)**

Yields of symmetric fission products (%) and peak-to-valley (P/V) ratio as a function of excitation energy in the (a & d) 232 Th(*p*, *f*) and 238 U(*p*, *f*), (b &e) 232 Th(*n*, *f*) and 238 U(*n*, *f*), (c & f) 232 Th(*γ*, *f*) and 238 U(*γ*, *f*).

Peak-to-valley (P/V) ratio as a function of excitation energy for (a) A=233 & Z=91,90 i.e. 232 Th(*p*, *f*) and 232 Th(*n*, *f*), (b) A=239 & Z=93, 92 i.e. 238 U(*p*, *f*) and 238 U(*n*, *f*), (c) Z=90 & A=233, 232 i.e. 232 Th(*n*, *f*) and 232 Th(*γ*, *f*) and (d) Z=92 & A=239, 238 i.e. 238 U(*n*, *f*) and 238 U(*γ*, *f*).

Summary for Yields of Fission Products

- (i) The yields of fission products in the 19.55-, 32.21 and 44.76-MeV protoninduced fission of 232 Th were determined by using an off-line γ -ray spectrometric technique. From the yields of various products mass chain yield were obtained by using charge distribution corrections.
- (ii) The mass-yield distributions in the 232 Th(p, f) reaction at various energies are triple humped, similar to those of 232 Th(γ , f) and 232 Th(n, f) reactions. The approach of symmetric split in the proton- and neutron-induced fission of 232 Th is faster than those in 238 U.
- (iii) The yields of fission products for A = 133-134, A = 138-139, and A = 143-144and their complementary products in the proton-induced fission of ²³²Th are higher than those of other fission products. This is due to shell closure proximity based on standard I and II asymmetric mode of fission besides the probable even-odd effect and N/Z effect of the fissioning system on fission products.

- IV. In the bremsstrahlung, neutron and proton induced fission of ²³²Th and ²³⁸U, the yields of high yield asymmetric products decreased marginally, whereas for symmetric products increased sharply with excitation energies. Accordingly, the P/V ratio in all the cases decreases with excitation energy. This shows the role of excitation energy.
- V. At all excitation energies, the P/V ratio in the bremsstrahlung, neutron and proton induced fission of ²³²Th is lower than those for ²³⁸U. This is due to the different type of potential surface in the former than latter.
- VI. At same excitation energy, for same-A compound nucleus, the P/V ratio is lower for heavier-Z than lighter-Z system. Conversely, for same-Z compound nucleus, the P/V ratio is lower for lighter-A than heavier-A system. This implies that the P/V ratio systematically decreases with increase of fissility parameters.

ACKNOWLEDGMENTS

The authors express their sincere thanks to the staff of the BARC-TIFR Pelletron of Mumbai, India and the MC-50 Cyclotron Laboratory in the Korea Institute of Radiological and Medical Sciences (KIRAMS), Korea for the excellent operation and their support during the experiment. This research was partly supported by the NRF through a grant provided by the Korean Ministry of Education, Science & Technology (MEST) (Center for Korean J-PARC Users, Grant No. K2100200173811B130002410 and Brain Pool Program), and by the Institutional Activity Program of Korea Atomic Energy Research Institute. One of the authors (H. Naik) thanks to Dr. K. L. Ramakumar for supporting the program and for permitting him to visit CHEP, Korea to carry out this experiment.

References

[1] R.Vandenbosch and J.R.Huizenga, Nuclear Fission (Academic, New York, 1973).

- [2] C. Wagemans, The Nuclear Fission Process (CRC, London, 1990).
- [3] H. A. Tewes and R. A. James, Phys. Rev. 88, 860 (1952).

[4] H. Kudo, H. Muramatsu, H. Nakahara, K. Miyano and I. Kohno, Phys. Rev. C 25, 3011 (1982).