Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission

T. Kawano, P Möller Theoretical Division, Los Alamos National Laboratory

UNCLASSIFIED

Slide 1

Combining QRPA Calculation and Statistical Decay

Nuclear Structure A,Z+1Precursor Beta-decay rate • β decay • Q_{R} from FRDM GT strength from QRPA ٠ Data from **FNSDF** ٠ **Nuclear De-excitation** Neutron and gamma emission rate ~ • delayed Hauser-Feshbach theory • Discrete level data from RIPI -• 3 (ENSDF) Integrate over all possible decay ۲ processes Neutron-gamma competition ۲ included QRPA Model

Hauser-Feshbach Mode

Energy

A-1,Z+1

ontinuum

ayed

del

Neutron

ayed

θ

UNCLASSIFIED

Hauser-Feshbach Neutron and Gamma Decay Code

Hauser-Feshbach Emission Probability

Model Parameters in CGM

Optical potential

- Koning-Delaroche global optical potential parameter
- CGM solves optical model internally to generate transmission coefficients for any compound nucleus

Level density

- Gilbert-Cameron-type composite formula (constant temperature and Fermi gas), with shell correction by Ignatyuk et al.
- parameter systematics same as the Hauser-Feshbach code CoH3

Gamma-ray strength function

- GDR parameter systematic by RIPL-3
- generalized Lorentzian model for E1
- E1, M1, E2 included

Discrete levels

• RIPL-3 / ENSDF

UNCLASSIFIED

Calculated DN Energy Spectra from Cs Isotopes

Determination of Discrete/Continuum Strength

Mixing QRPA and ENSDF Strength Distributions

- Broaden QRPA strength by 100-keV Gaussian
- When ENSDF is thought to be complete
 - Use beta decay branching ratio data in ENSDF only
- When ENSDF is not complete
 - Mix ENSDF and QRPA calculation
 - Re-normalize ENSDF decay branching ratios using QRPA result

When no data are given in EN⁻

Beta-Delayed Gamma-Rays from Cs Isotopes

Spin Selection in CGM

 Neutron Emission Suppressed By Spin/Parity Conservation

Neutron and Gamma-Ray Competition

• Los Alamos

UNCLASSIFIED

Slide 12

Br-87,88 Beta-Delayed Neutron and Gamma

Pn Changes When Gamma Channel Is Competing

Multiple Neutron Emission

Several neutrons can be emitted when Sn's are small

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

Slide 15

Calculated Pn, Including Neutron/Gamma Competition

As-93, Maximum Four Neutrons

Calculated Spectra for Multi-Neutron Emission, As-93

Calculated Decay Heating (example)

U-235

Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA

S. Holloway, T.Kawano, P.Moller,

Concluding Remarks

 More microscopic technique to calculate beta-delayed neutron and gamma-ray energy spectra

- the FRDM and QRPA models,
- the statistical Hauser-Feshbach model for neutron and gammaray emission probabilities
- ENSDF if available

Neutron spectra

 calculated spectra reasonably agree with those evaluated based on experimental data

Gamma-ray spectra

- exact neutron and gamma-ray competition included
- consider all daughter nuclei after multiple neutron emission
- pure QRPA calculation tends to over-predict gamma heating

Calculated spectrum data available through ENDF decay data library

UNCLASSIFIED

Slide 21

