Fission Properties of Neutron-Rich Nuclei

Walter F. Henning (RIKEN, ANL, TU Munich)

Fission Properties of Neutron-Rich Nuclei

Motivation

Predictions from recent theory

Experimental fission barriers

Proposed approach to n-rich isotopes

Summary and outlook

Predictions from recent theory

PHYSICAL REVIEW C 79, 064304 (2009)

Heavy-element fission barriers

Peter Möller,^{1,*} Arnold J. Sierk,¹ Takatoshi Ichikawa,² Akira Iwamoto,³ Ragnar Bengtsson,⁴ Henrik Uhrenholt,⁴ and Sven Åberg⁴

10th ASRC Workshop, JAEA, Tokai, Japan

Experimental determination(s) of fission barriers

Earlier fission barrier studies at low energies employing direct nucleon-transfer reactions

Entry Distribution, Fission Barrier, and Formation Mechanism of ²⁵⁴No P. Reiter, 1,2 T. L. Khoo, 1 T. Lauritsen, 1 C. J. Lister, 1 D. Seweryniak, 1 A. A. Sonzogni, 1 I. Ahmad, 1 N. Amzal, 3 P. Bhattacharyya, 4 P. A. Butler, 3 M. P. Carpenter, 1 A. J. Chewter, 3 J. A. Cizewski, 1,5 C. N. Davids, 1 K.Y. Ding, 5 N. Fotiades, 5 J. P. Greene, 1 P. T. Greenlees, 3 A. Heinz, 1 W. F. Henning, 1 R.-D. Herzberg, 3 R.V. F. Janssens, 1 G. D. Jones, 3 H. Kankaanpää, 7 F. G. Kondev, 1 W. Korten, 6 M. Leino, 7 S. Siem, 18 J. Uusitalo, 1 K. Vetter, 9 and I. Wiedenhöver 1

3/21-22/2013

Excitation-energy sharing in uranium induced dissipative collisions*

G. Beier, J. Friese, W. Henning **, P. Kienle **, H.J. Körner, W. Wagner. W.A. Maver. and W. Maver

How can we experimentally determine fission barriers of neutron-rich nuclei?

Quasi-Free Scattering and Nuclear Structure. II.

GERHARD JACOB* AND TH. A. J. MARIS

THE DIFFERENTIAL CROSS SECTION FOR PROTON-PROTON ELASTIC SCATTERING AT 90° c.m. BETWEEN 300 AND 500 MeV D. OTTEWELL and P. WALDEN TRIUMF, 4004 Wesbrook Mall, Vancouver, BC, Canada V6T 2A3 E.G. AULD, G. GILES, G. JONES, G.J. LOLOS, B.J. McPARLAND and W. ZIEGLER Physics Department, University of British Columbia, Vancouver, BC, Canada V6T 2A6 and W. FALK Physics Department, University of Manitoba, Winnipeg, Man., Canada R3T 2N2 4.5 4.0 <u>dơ</u> /mb/sr dΩ 3.5 3.0 2.5 300 500 400 600 T_{LAB} (MeV)

Nuclear Physics A412 (1984) 189-194 © North-Holland Publishing Company

E _p (MeV)	Carbon dσ/dΩ (mb/sr)	pp elastic d <i>o</i> /dΩ 90° c.m. (mb/sr)
300	0.432 ± 0.007	3.769±0.019
350	0.509 ± 0.009	3.759 ± 0.019
400	0.568 ± 0.010	3.742 ± 0.019
450	0.604 ± 0.010	3.682 ± 0.019
500	0.638 ± 0.011	3.471 ± 0.018

Production Cross-sections of Neutron-Rich Pb and Bi Isotopes in the fragmentation of $^{\rm 238}{\rm U}$

H. Alvarez-Pol et al.; Eur. Phys. J. A 42 (2009) 485

10th ASRC Workshop, JAEA, Tokai, Japan

Neutron rich regions with known production cross sections from ²³⁸U fragmentation

Countrate estimates:

Fragmentation yield for ²³⁸U beam and ₆=100nb

10 pnA ²³⁸U 250 mg/cm² Be target 100 nb fragment cross section (~ ¹⁹⁸Pt, ²¹⁴Pb, ²¹⁷Bi) 1 day beam on target

N=8.6 \times 10⁶ fragment events per day

Fission yield for (p,2p)

8.6 x 10⁶/day (²¹⁴Pb or ²¹⁷Bi) 1g/cm² H₂ target 100µb/MeV (p,2pf) cross section 1 day beam on target

N=5 x 10² events/day•MeV

3/21-22/2013

SAMURAI Commissioning May 2012 • All the detectors and DAO commissioned with

BEA

- DAQ commissioned with beam and calibrated
- HI-neutron coincidences
 - − ${}^{17}C \rightarrow {}^{16}C+n {}^{15}B+n$
 - − ¹⁵C \rightarrow ¹⁴C+n
 - − ¹⁴Be \rightarrow ¹²Be+2n

- **RIKEN**: K. Yoneda, N. Fukuda, N. Inabe, T. Isobe, T. Kubo, K. Kusaka, T. Motobayashi, J. Ohnishi, H. Otsu, H. Sato, Y. Shimizu, H. Suzuki, H. Takeda, S. Takeuchi

HODF

- Tohoku U: T. Kobayashi, K. Takahashi, K. Sekiguchi
- **-Tokyo Tech**: T. Nakamura, N. Kobayashi, Y. Kondo, R. Minakata, S. Nishi, S. Ogoshi, T. Sako, R. Tanaka
- K. Minakata, S. Nishi, S. Ogoshi, I. Sako, K. Tar
- Kyoto U: Y. Matsuda, T. Murakami
- Kyushu U: T. Teranishi

0

FDC2

- France: F. Delaunay, J. Gibelin, M. Miguel
- Germany: T. Aumann, Y. Togano
- Korea: Y. Sato, J. Hwang, S. Kim

Fission-Fragment Mass Distribution

27

