



#### FISSION OF NEUTRON-DEFICIENT NUCLEI IN THE 180-205 MASS REGION

T. GORBINET (CEA, DAM, DIF) FOR THE SOFIA COLLABORATION



#### 1) MAIN OBJECTIVE

ACCURATE MEASUREMENT OF FISSION FRAGMENTS YIELDS

fission of heavy nuclei (<sup>234</sup>U,<sup>235</sup>U,<sup>236</sup>U,<sup>237</sup>Np,<sup>238</sup>Np) for *applications* purpose

- → need of high quality data means high statistics (also for calibration purpose)
- $\rightarrow$  <u>a couple of days</u> of data taking
- 2) EXPLORATORY OBJECTIVE

BROWSE THE NUCLEAR LANDSCAPE (see next slide) FOR A NEW REGION OF INTEREST

**EXOTIC** neutron-deficient settings

- $\rightarrow$  allow to access many nuclei from Rn down to Hg
- $\rightarrow$  <u>a few hours</u> of data taking (low statistics)



K.-H. Schmidt et al. / Nuclear Physics A 665 (2000) 221-267



The GSI facility





at such energies, the only way to identify both in charge and mass the nuclei is the  $B\rho - \Delta E - ToF TECHNIQUE$ 

to get the mass A, we need the charge Z of the fragment, its velocity γv AND its magnetic deviation due to the dipole Bp

 $A \propto \frac{B\rho}{\gamma \nu} Z$ 

**USED TWICE** 

- 1) FOR THE ID. OF THE INCOMING BEAM
- 2) FOR THE ID. OF THE FISSION FRAGMENTS



#### IDENTIFICATION OF THE SECONDARY BEAM





#### IDENTIFICATION OF THE SECONDARY BEAM NUCLEAR CHARGE FRS s

FRS setting: <sup>200</sup>Rn





#### IDENTIFICATION OF THE SECONDARY BEAM NUCLEAR CHARGE & MASS



FRS setting: <sup>200</sup>Rn

#### IDENTIFICATION OF THE SECONDARY BEAM NUCLEAR CHARGE & MASS





#### ACTIVE TARGET

once the projectile (A,Z) is identified, its fission is induced in our active target by *Coulomb excitation (COULEX)* in the vicinity of heavy target material (uranium)

→ GDR excitation of the projectile (around 11 MeV ⇔ 6 MeV neutron induced fission)





 $\Lambda E \propto Z^2$ 

ACTIVE TARGET

**ENERGY LOSS IN THE ACTIVE TARGET** 





IDENTIFICATION OF THE FISSION FRAGMENTS















COULEX-induced fission of <sup>235</sup>U

the nuclear charge correlation between the 2 fission fragments





COULEX-induced fission of <sup>235</sup>U

the fragmentation-fission background substraction



electromagnetic fission in uranium









# MOST EXOTIC SETTINGS !



Z vs. A / Z – Fission in Active Target



Cea

DE LA DECUERCHE À 1

#### **SOFIA: Studies On FIssion with Aladin**



N/Z ≈ 1.34 – 1.37



 $_{\odot}$   $^{204}Rn$  compatible with data by K.-H. Schmidt *et al.* 

# strong odd-even staggering

 not neutron-deficient enough to see transition from symmetry to asymmetry... ?





N/Z ≈ 1.32 – 1.30

even if statistics is low,

#### asymmetric behavior

is clearly visible

(ongoing analysis for other nuclei)

**CONFIRMATION** OF ASYMMETRIC BEHAVIOR IN THIS MASS REGION

Nuclear Charge Z

AS FIRST SEEN BY A. ANDREYEV ET AL.





- VERY PROMISING RESULTS CONCERNING HEAVY ACTINIDES
- ON-GOING ANALYSIS CONCERNING NEUTRON-DEFICIENT NUCLEI

PRELIMINARY RESULTS: TOO SOON TO MAKE ANY CONCLUSIONS ON PHYSICS YET

• HOWEVER REGION OF  $N/Z \approx 1.3$  seems really interesting ...

PLANS TO INVESTIGATE THIS REGION WITH UPDATED SOFIA SETUP AND (OBVIOUSLY) MORE STATISTICS IN THE BEGINNING OF 2014















UNIVERSITY OF TECHNOLOGY





# Electronic and data flow issues (1/2)

distance between S2 (dispersive focal plane of FRS spectrometer) and Cave C: <u>140 m !</u>



for some technical
reasons impossible to use
a single DAQ

solution: two
independent acquisitions
"synchronized" together
via *TRIDI* modules
(TRIggerDIstribution)

#### electronic diagram



# electronic and data flow issues (2/2)





#### mass reconstruction to be done:



more difficult to extract - we need:

- walk correction (due to the CFDs) of all ToF channels (energy dependence of the ToF signal)
- precise calibration in absolute time of all plastics (rough calibration done for  $\Delta E(\beta)$ )

