Pairing effects in fusion phenomena utilizing a time-dependent mean field theory

Ebata Shuichiro
Center for Nuclear Study, University of Tokyo

Nakatsukasa Takashi
RIKEN Nishina Center

Simulation of heavy ion collision using TDHF

H.Flocard, S.E.Koonin and M.S.Weiss Phys. Rev. C17 (1978) 1682

FIG. 2. Contour lines of the density integrated over the coordinate normal to the scattering plane for an ${ }^{16} \mathrm{O}+{ }^{16} \mathrm{O}$ collision at $E_{1 a b}=105 \mathrm{MeV}$ and incident angular momentum $L=13 \hbar$. The times t are given in units of $10^{-22} \mathrm{sec}$.
$10^{\text {th }}$ ASRC Int. work shop
S. Ebata

Expected pairing correlation effects in Heavy ion collision?

${ }^{\wedge}$ Level crossing

* Energy Dissipation
- Neck formation
* Odd-even effects for spontaneous fission half-lives?
${ }^{\wedge}$ Fusion or Fission cross section
\triangle Pair transfer reaction
\triangle Nuclear Josephson effect

Several mean-field theories

	For static	For dynamics
No Pairing	Hartree-Fock(HF)	Time-Dependent HF (TDHF, RPA)
With BCS Pairing	HF+BCS	TDHF+BCS
With Pairing	Hartree-Fock- Bogoliubov (HFB)	Tb-TDHFB\quad(QRPA)

※ RPA: Random-Phase Approximation
※ QRPA: Quasi-particle RPA
$10^{\text {th }}$ ASRC Int. work shop
S. Ebata

What is Cb-TDHFB?

Cb-TDHFB can be derived from TDHFB represented in canonical basis*, with an approximation of pairing potential which is diagonal as like BCS.

$$
\left.|\Psi(t)\rangle=\prod_{k>0}\left(v_{k}(t)+u_{k}(t) \hat{c}_{k}^{\dagger} \hat{c}_{\bar{k}}^{\dagger}\right)|0\rangle\right)
$$

*Canonical basis diagonalize density matrix.
$\rho_{k}(t)=\left|v_{k}(t)\right|^{2}$: Occupation probability
$\kappa_{k}(t)=u_{k}(t) v_{k}(t):$ Pair probability

Cb-TDHFB is a time-dependent scheme including pairing correlations as in the BCS approximation.

Cb-TDHFB equations

$i \hbar \frac{\partial}{\partial t}\left|\phi_{k}(t)\right\rangle=\left(h(t)-\eta_{k}(t)\right)\left|\phi_{k}(t)\right\rangle$
$i \hbar \frac{\partial}{\partial t} \rho_{k}(t)=\kappa_{k}(t) \Delta_{k}^{*}(t)-\Delta_{k}(t) \kappa_{k}^{*}(t)$
$i \hbar \frac{\partial}{\partial t} \kappa_{k}(t)=\left(\eta_{k}(t)+\eta_{\bar{k}}(t)\right) \kappa_{k}(t)+\Delta_{k}(t)\left(2 \rho_{k}(t)-1\right)$

$$
\eta_{k}(t) \equiv\left\langle\phi_{k}(t)\right| h(t)\left|\phi_{k}(t)\right\rangle+i \hbar\left\langle\left.\frac{\partial \phi_{k}}{\partial t} \right\rvert\, \phi_{k}(t)\right\rangle
$$

Example : Photo-absorption cross section of ${ }^{172} \mathrm{Yb}$

$10^{\text {th }}$ ASRC Int. work shop
S. Ebata

Example of Cb -TDHFB (for ${ }^{172} \mathrm{Yb}$; numerical cost)

Cb-TDHFB can reproduce the similar results of QRPA with very small numerical cost.

J. Terasaki and J. Engel PRC82, 034326

Total cal. cost : 100,000 CPU hours (with Kraken; Super computer of ORNL)
Box Size : $\rho=\mathrm{z}_{ \pm}=20[\mathrm{fm}]$, b-spline (Cylindrical)
Single-quasiparticle space (HFB g.s.) :
5348 states for neutron, 4648 states for proton

S. Ebata using Cb-TDHFB (based on PRC82, 034306)

Total cal. cost : $\mathbf{3 0 0}$ CPU hours (with a Single processor; Intel Core i7 3.0 GHz)
Box size : $\mathrm{R}=15[\mathrm{fm}]$, mesh=1[fm] (3D-Spherical)
Canonical-basis space (HF+BCS g.s.) :
146 states for neutron, 98 states for proton

Setup for collision

Incident Energy : 20, 40 [MeV] (Coulomb Barrier ~9.7 [MeV])
Impact parameter : 0.0, $0.2,0.4,0.6,0.8,1.0,2.0[\mathrm{fm}]$
Effective Interaction : Skyrme force (SkM*), Contact pairing
Projectile : ${ }^{20} \mathrm{O}$, Target : ${ }^{20} \mathrm{O}$
\# of canonical-basis for HF+BCS g.s. ; $(N, Z)=(32(16+16), 16(8+8))$
Average of gap energy ; $\quad \bar{\Delta}_{\mathrm{n}}=1.901[\mathrm{MeV}] \quad V_{0}^{\mathrm{n}}=-321.0[\mathrm{MeV}]$
Calculation space (3D meshed box):

Length of box for \boldsymbol{z} is $\mathbf{5 0}[\mathrm{fm}]$ meshed by $\mathbf{1 . 0}$ [fm]

Lengths of box for $\boldsymbol{x}, \boldsymbol{y}$ are $\mathbf{3 0}[\mathrm{fm}]$ meshed by $\mathbf{1 . 0}$ [fm]
$10^{\text {th }}$ ASRC Int. work shop
S. Ebata

Simulation of ${ }^{\mathbf{2 0}} \mathbf{O}+{ }^{\mathbf{2 0}} \mathbf{O}$ collision with $b=0.0[\mathrm{fm}]$ and $\mathrm{E}_{\mathrm{in}}=40[\mathrm{MeV}]$

Time-evolution of Neutron density

$$
b=0.0[\mathrm{fm}] \& 40[\mathrm{MeV}]
$$

Time-evolution of Gap energy

Nuclear density vibrate with keeping deformed shape. Gap energy is dumping at contact and vibration while neutron density vibration.

Setup for collision

Incident Energy : 18-20 [MeV] ($\left.E_{\mathrm{cm}}=9.0-10[\mathrm{MeV}], \mathrm{V}_{\mathrm{FD}} \sim 9 \mathrm{MeV}\right)$
Impact parameter : 0.0, 2.8-3.1[fm]
Effective Interaction : Skyrme force (SkM*), Contact pairing
Projectile : ${ }^{22} \mathrm{O}$, Target : ${ }^{22} \mathrm{O}$ (HF g.s. has also spherical shape)
\# of canonical-basis for HF+BCS g.s. ; $(N, Z)=(32(16+16), 16(8+8))$ Average of gap energy ; $\bar{\Delta}_{n}=2.066[\mathrm{MeV}] \quad V_{0}^{\mathrm{n}}=-412.5[\mathrm{MeV}]$

Calculation space (3D meshed box):

$10^{\text {th }}$ ASRC Int. work shop
S. Ebata

Simulation of ${ }^{22} \mathbf{O}+{ }^{22} \mathbf{O}$ collision with $b=3.0[\mathrm{fm}]$ and $E_{\mathrm{cm}}=10[\mathrm{MeV}]$
Time-evolution of Neutron density distribution

$10^{\text {th }}$ ASRC Int. work shop
S. Ebata

Simulation of ${ }^{22} \mathbf{O}+{ }^{22} \mathbf{O}$ collision with $b=3.0[\mathrm{fm}]$ and $E_{\mathrm{cm}}=10[\mathrm{MeV}]$
Time-evolution of Neutron density distribution

$10^{\text {th }}$ ASRC Int. work shop
S. Ebata

Summary \& Perspective

Summary

- Apply the Cb-TDHFB to heavy-ion collision, including a pairing.
- Execute the simulation of ${ }^{22} \mathrm{O}+{ }^{22} \mathrm{O}$ collision with $b \geqq 0.0[\mathrm{fm}], E_{\mathrm{cm}}=9-10[\mathrm{MeV}]$

From

simulation of ${ }^{22} \mathbf{O}+{ }^{22} \mathbf{O}$ collision with $b=2.8-3.1[\mathrm{fm}]$ and $E_{\mathrm{cm}}=10[\mathrm{MeV}]$,
$2.8 \mathrm{fm}<\underline{b_{f}^{\mathrm{Bs}}}<2.9 \mathrm{fm}<\underline{b_{f}^{\mathrm{Bw}}}<3.0 \mathrm{fm}<\underline{b_{f}^{\mathrm{H}}}<3.1 \mathrm{fm}$
Pairing correlation does not increase the fusion cross section. (in this work)

Perspective

夫 About some physical values (gap, s.p.-states, Q-moment, etc.)
\star Particle number projection for the nucleon transfer
\star More heavy system ($\left.{ }^{52} \mathrm{Ca}+{ }^{52} \mathrm{Ca}\right) \rightarrow$ it can be compare TDHF.
\star Different nuclei collision phenomena $\left({ }^{22} \mathrm{O}+{ }^{52} \mathrm{Ca}\right)$

* Realistic system (Ni isotope)

