
Beta-delayed fission: from neutrondeficient to neutron-rich nuclei

Andrei Andreyev University of York, UK

Collaboration

THE UNIVERSITY of York

A. Andreyev

V.Truesdale

R. Wadsworth

D. Jenkins

M. Vermeulen

C. Barton

M. Bentley

JAEA Tandem

K. Nishio

S.. Mitsuoka

I. Nishinaka

H. Makii

S. Chiba

A.lwamoto

H.Koura

Y.Utsuno

P. Möller, A. Sierk

LBNL(Berkeley): Jorgen Randrup

Yukawa Institute (Kyoto, Japan)

T. Ichikawa

J. Elseviers

C. Van Beveren

L. Ghys

M. Huyse

D. Radulov

E. Rapisarda

P. Van Duppen

U. Koster (*ILL*, *Grenoble*, *France*)

R. Page, OLL, University of Liverpool

N. Patronis, University of Ioannina, Greece

S. Vermote, C. Wagemans (Gent, Belgium)

M. Veselský (Slovakia)

I.Tsekhanovich (CENBG, France)

L. Popescu, D. Pauwels, SCK•CEN, Mol, Belgium

S. Antalic, Z. Kalaninova, Comenium University, Slovakia

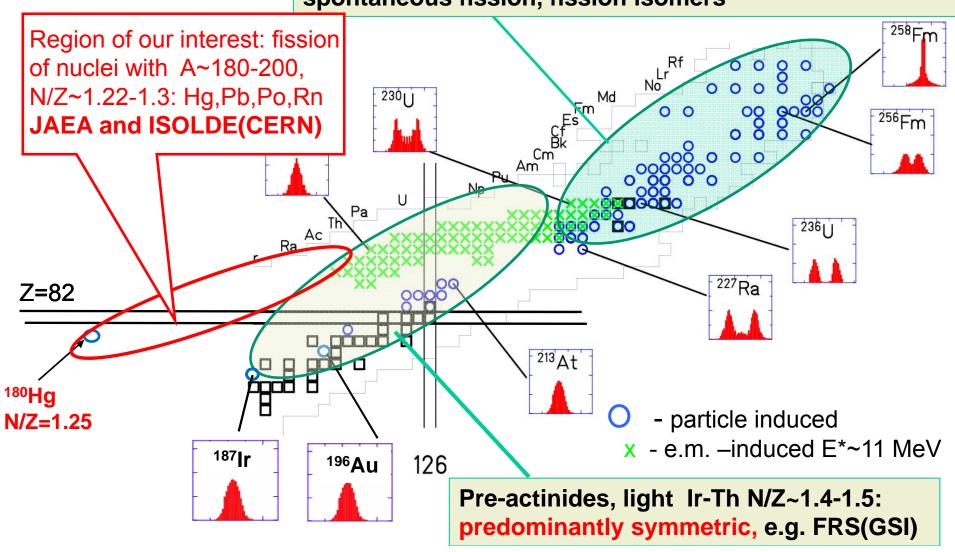
Outlook

- Brief (experimental) review on low-energy fission
- · Low-energy fission in "new" regions of the Nuclear Chart
- Beta Delayed Fission (β DF) what it is and why?
- βDF ^{194,196}At, ²⁰²Fr
- Further plans and ideas

Symmetric vs Asymmetric Fission

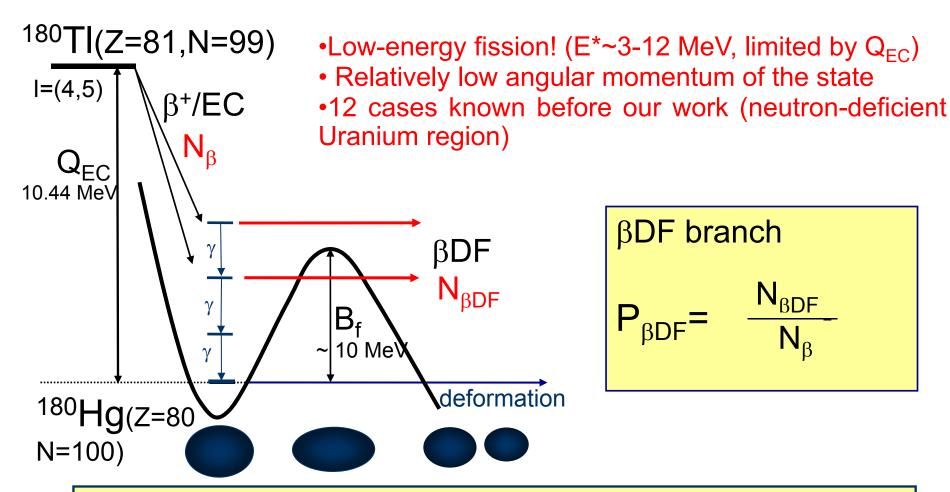
J. Phys. G: Nucl. Part. Phys. 35 (2008) 035104

A V Karpov et al


Figure 2. Macroscopic (a) and macro-microscopic (b) potential energy surface for the 238 U nucleus in the coordinates (R, η) . The potential energy is obtained for $\delta = 0$ and $\varepsilon = 0.35$. The macroscopic part is normalized to zero for the spherical shape of the compound nucleus.

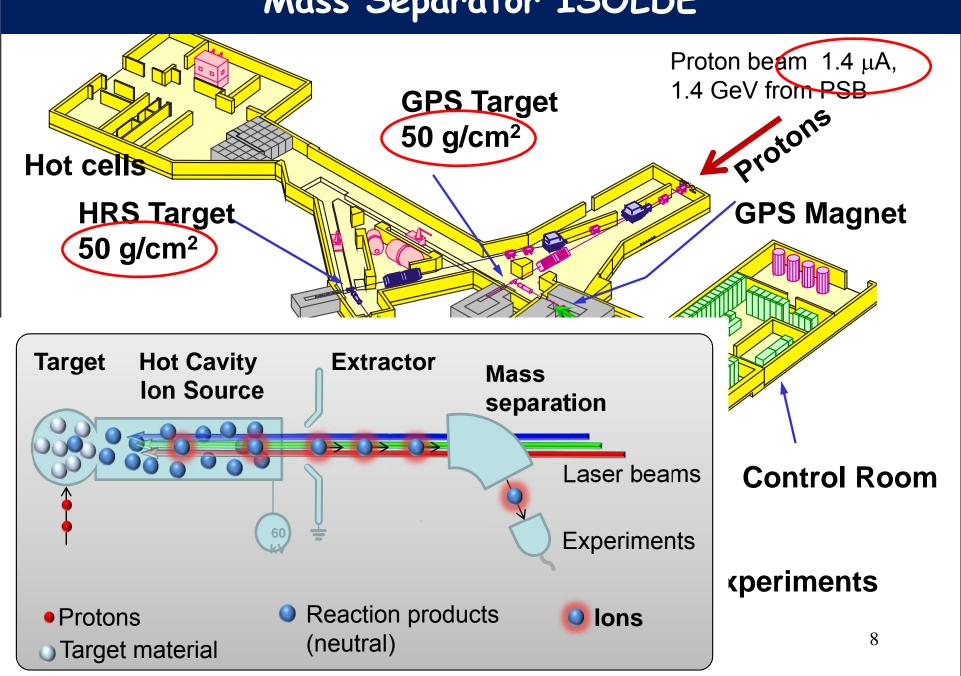
Experimental information on low-energy fission Nuclei with measured charge/mass split (RIPL-2 + GSI)

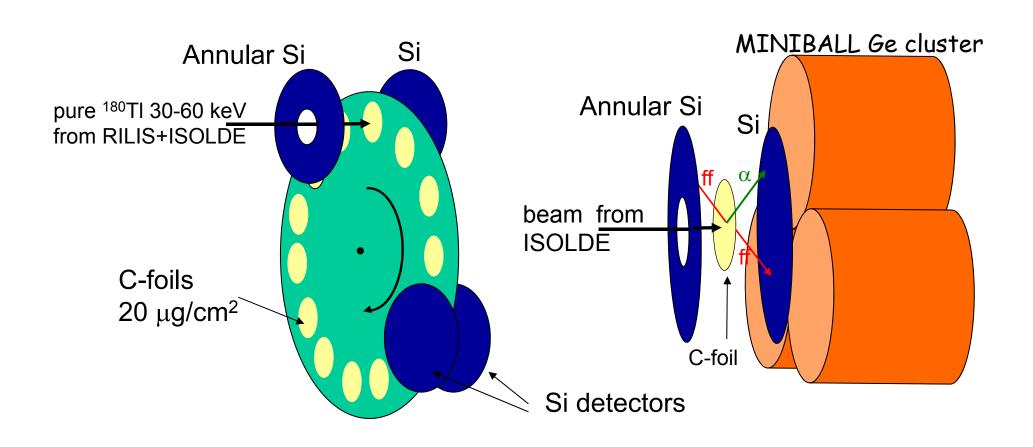
Heavy Actinides, N/Z~1.56: predominantly asymmetric; spontaneous fission, fission isomers ²⁵⁸Fm 2301 Cf Cm Am Md ²⁵⁶Fm ²⁰⁹Ra 236[] ²²⁷Ra Z = 82213 At - particle induced x - e.m. -induced F*~11 MeV 187|r ¹⁹⁶Au 126


Experimental information on low-energy fission Nuclei with measured charge/mass split (RIPL-2 + GSI)

Heavy Actinides, N/Z~1.56: predominantly asymmetric; spontaneous fission, fission isomers

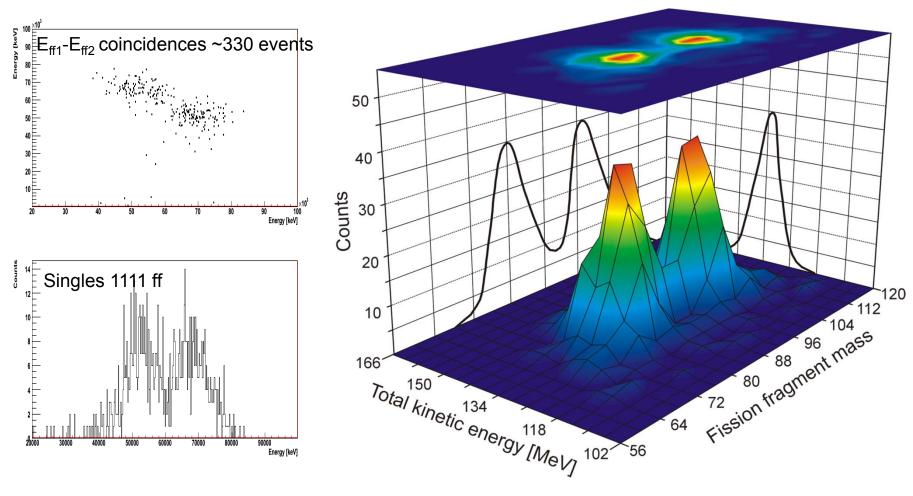
Beta-Delayed Fission


Discovery: 232,234 Am (1966, Dubna)


$P_{\beta DF}$ depends strongly on:

- Q_{EC} of the <u>parent</u>: the higher Q_{EC} , the larger the $P_{\beta DF}$
- B_f of the <u>daughter</u>: the lower B_f , the larger the $P_{\beta DF}$
- Actually, Q_{EC} -B_f and β -strength S_{β} are the most important parameters

Mass Separator ISOLDE



Detection system for βDF studies at ISOLDE

Energy/Mass distribution of fission fragments from ¹⁸⁰Hg

ASYMMETRIC energy split! Thus asymmetric mass split: $M_H=100(4)$ and $M_L=80(4)$

The most probable fission fragments are ¹⁰⁰Ru (N=56,Z=44) and ⁸⁰Kr (N=44,Z=36)

CLDM (P. Möller et al., yet unpublished)

CLDM: Clay Liquid Drop Model (circa 2008)

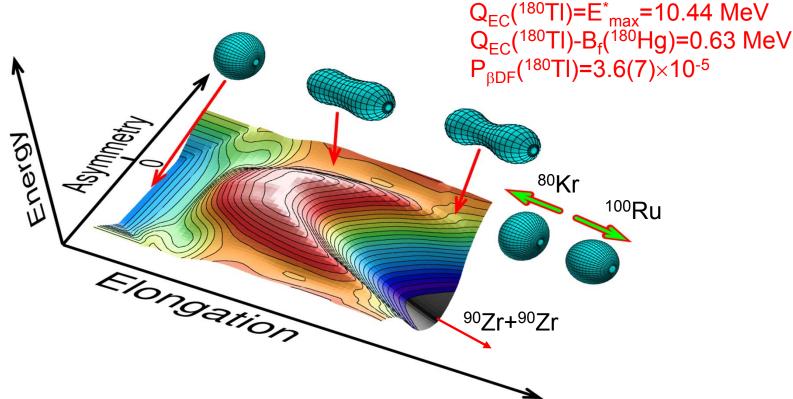
New Type of Asymmetric Fission in Proton-Rich Nuclei

PRL **105**, 252502 (2010)

PHYSICAL REVIEW LETTERS

week ending 17 DECEMBER 2010

3


New Type of Asymmetric Fission in Proton-Rich Nuclei **via** βDF of ¹⁸⁰Tl

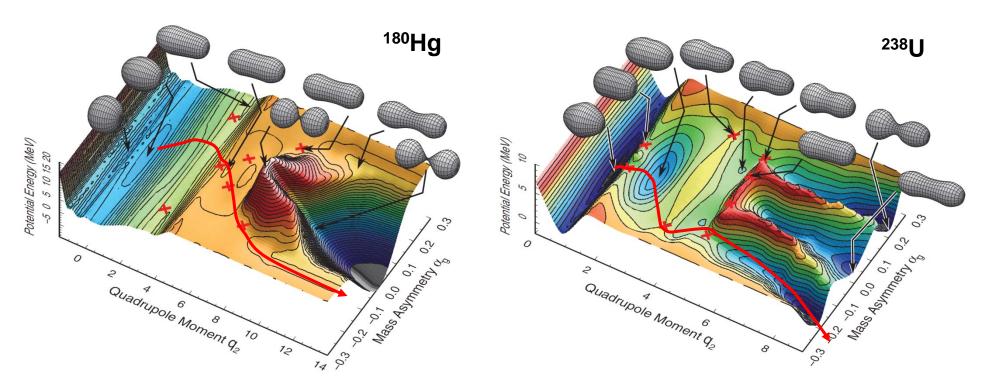
A. N. Andreyev, ^{1,2} J. Elseviers, ¹ M. Huyse, ¹ P. Van Duppen, ¹ S. Antalic, ³ A. Barzakh, ⁴ N. Bree, ¹ T. E. Cocolios, ¹ V. F. Comas, ⁵ J. Diriken, ¹ D. Fedorov, ⁴ V. Fedosseev, ⁶ S. Franchoo, ⁷ J. A. Heredia, ⁵ O. Ivanov, ¹ U. Köster, ⁸ B. A. Marsh, ⁶ K. Nishio, ⁹ R. D. Page, ¹⁰ N. Patronis, ^{1,11} M. Seliverstov, ^{1,4} I. Tsekhanovich, ^{12,17} P. Van den Bergh, ¹ J. Van De Walle, ⁶ M. Venhart, ^{1,3} S. Vermote, ¹³ M. Veselsky, ¹⁴ C. Wagemans, ¹³ T. Ichikawa, ¹⁵ A. Iwamoto, ⁹ P. Möller, ¹⁶ and A. J. Sierk ¹⁶

¹Instituut voor Kern- en Stralingsfysica, K.U. Leuven, University of Leuven, B-3001 Leuven, Belgium

²School of Engineering, University of the West of Scotland,

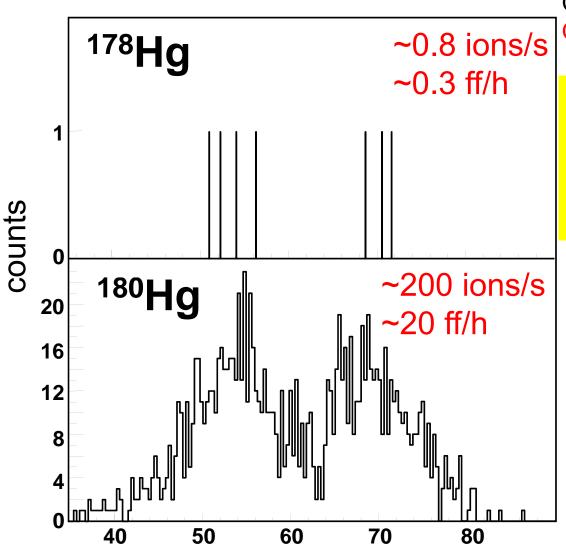
Paisley, PA1 2BE, United Kingdom, and the Scottish Universities Physics Alliance (SUPA)

Calculations according to 5D fission model (P. Möller et al., Nature 409, 785 (2001))


Two types of asymmetry: what's the difference?

PHYSICAL REVIEW C 86, 024610 (2012)

Contrasting fission potential-energy structure of actinides and mercury isotopes


Takatoshi Ichikawa, ¹ Akira Iwamoto, ² Peter Möller, ³ and Arnold J. Sierk ³

Conclusions: The mechanism of asymmetric fission must be very different in the lighter proton-rich mercury isotopes compared to the actinide region and is apparently unrelated to fragment shell structure. Isotopes lighter than ¹⁹²Hg have the saddle point shielded from a deep symmetric valley by a significant ridge. The ridge vanishes for the heavier Hg isotopes, for which we would expect a qualitatively different asymmetry of the fragments.

βDF of ¹⁷⁸TI @ISOLDE

V. Liberati et al (submitted to PRC, 2013)

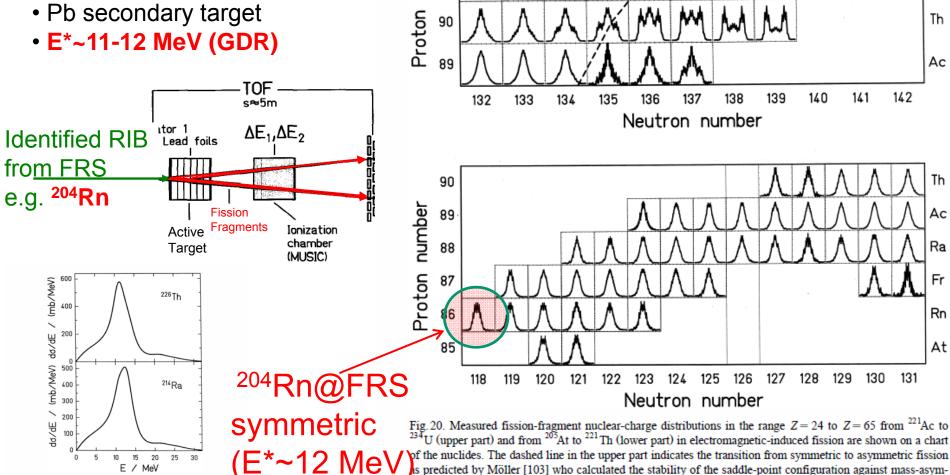
 $Q_{EC}(^{178}TI)=E^*_{max}(^{178}Hg)=11.14 \text{ MeV}$ $Q_{EC}(^{178}TI)-B_f(^{178}Hg)=1.82 \text{ MeV}$

At this level of statistics: also asymmetric fission of ¹⁷⁸Hg, with mass split similar to ¹⁸⁰Hg

 $E^*_{max}(^{180}Hg)=10.44 \text{ MeV}$

Fission Fragments Energy in Si detector [MeV]

Low-energy Electromagnetically-Induced Fission in-flight at FRS(GSI), K.-H. Schmidt et al.

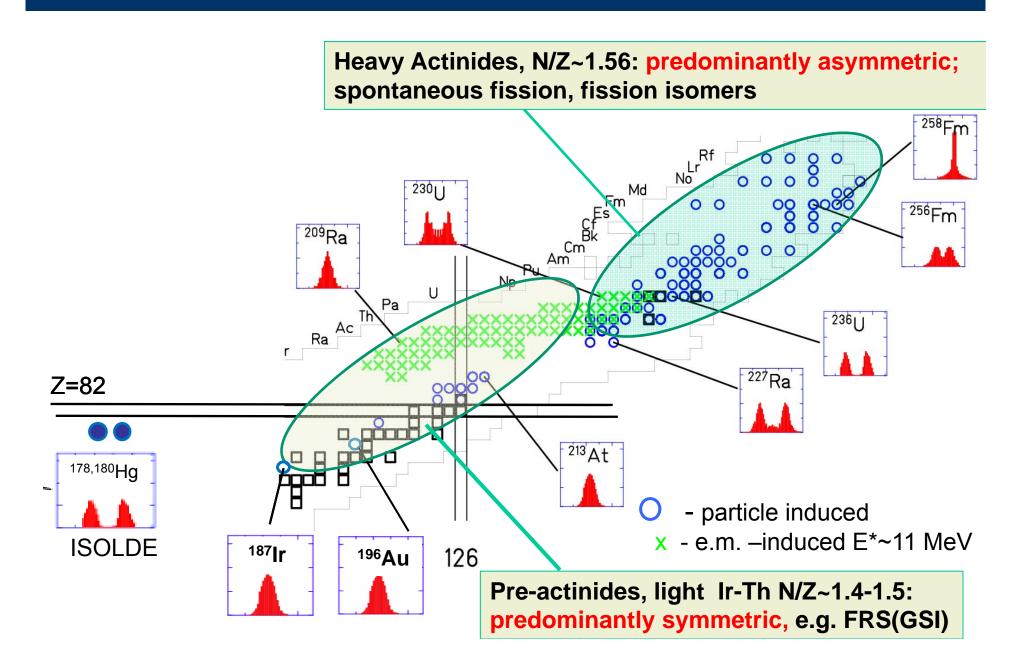

Pa

Th

92

number

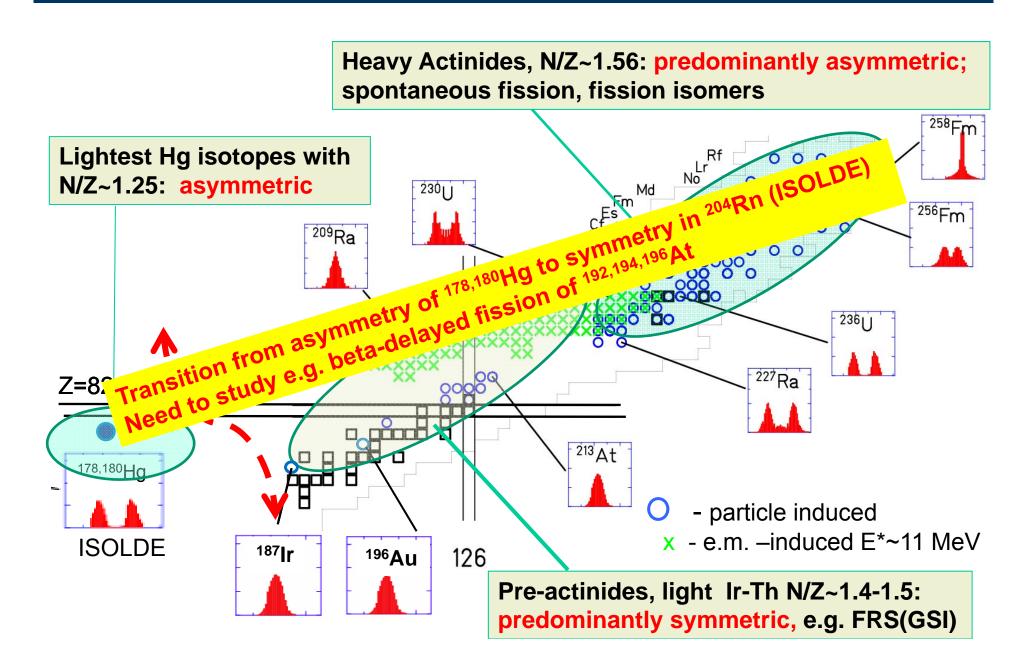
- Primary beam ²³⁸U at 1 AGeV
- 1 g/cm² primary target
- Separated RIBs from FRS
- Pb secondary target



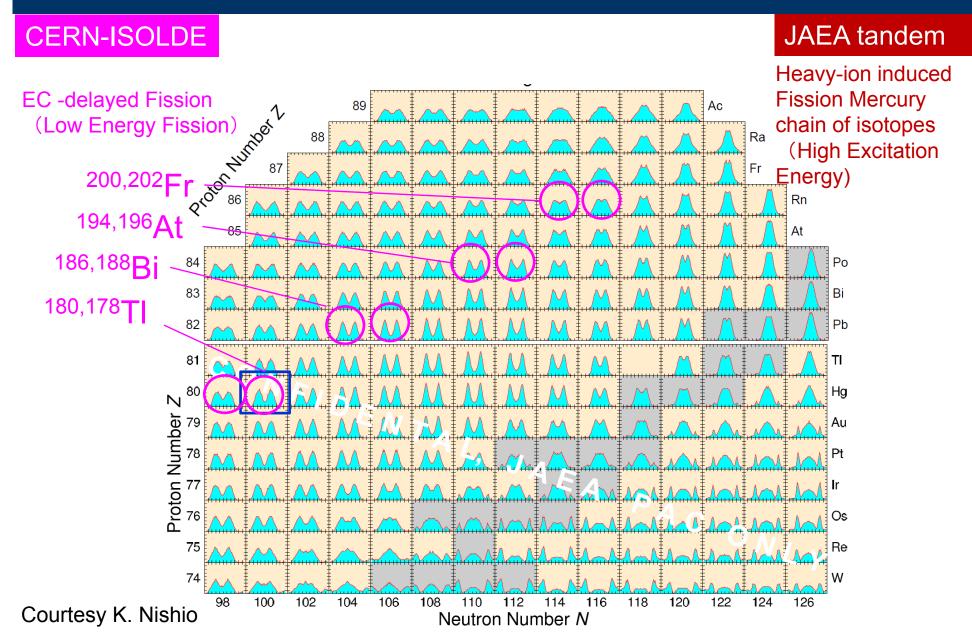
probability.

is predicted by Möller [103] who calculated the stability of the saddle-point configuration against mass-asymmetric deformations. Nuclei on the right-hand side of this line were expected to predominantly show asymmetric fission, while nuclei on the left-hand side were expected to show symmetric fission with higher

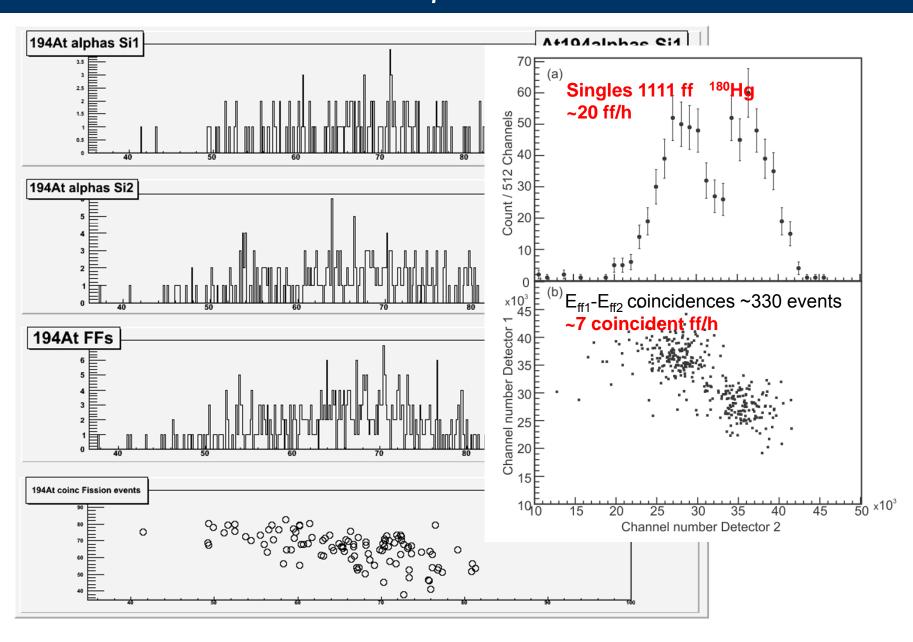
K.-H. Schmidt et al. / Nuclear Physics A 665 (2000) 221–267


New Region of Asymmetric Fission

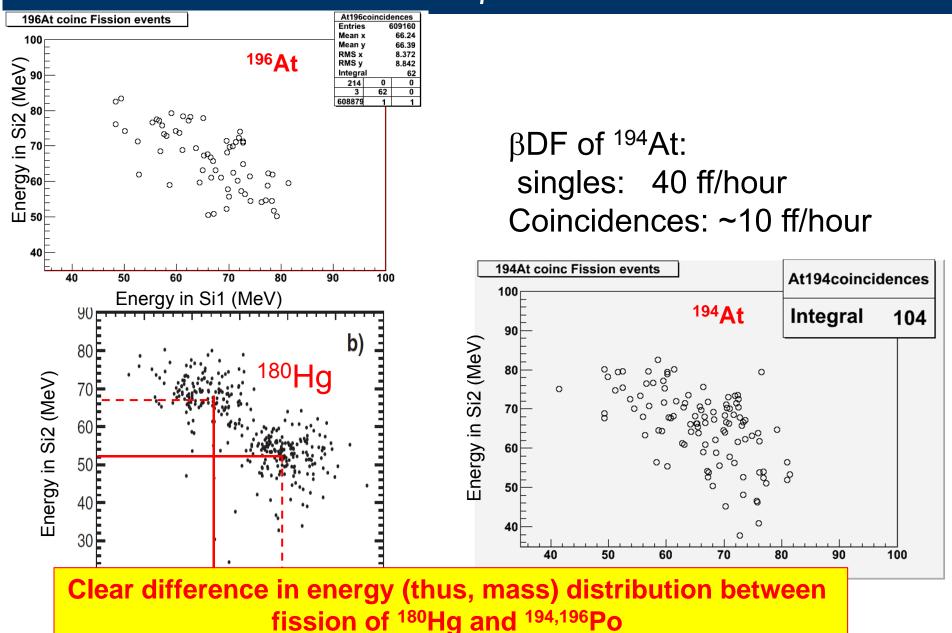
New Region of Asymmetric Fission

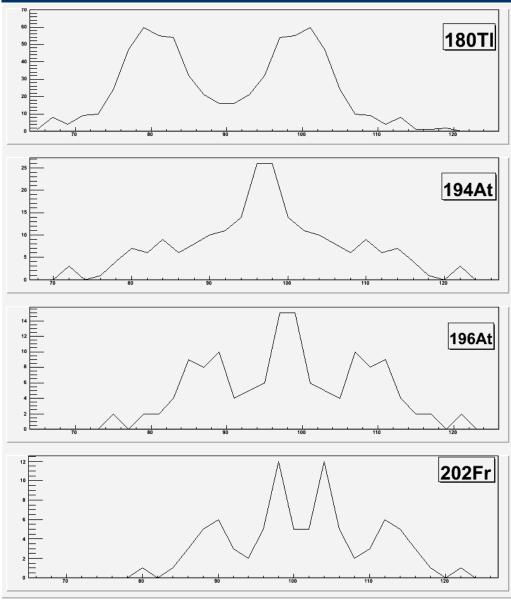

Heavy Actinides, N/Z~1.56: predominantly asymmetric; spontaneous fission, fission isomers ²⁵⁸Fm **Lightest Hg isotopes with** N/Z~1.25: asymmetric 230 Cf Cm Am Md 0 0 ²⁵⁶Fm ²⁰⁹Ra Pa Ra Ac 23611 ²²⁷Ra Z=82 ²¹³ At 178,180Ha - particle induced **ISOLDE** x - e.m. -induced F*~11 MeV 187|r ¹⁹⁶Au 126 Pre-actinides, light Ir-Th N/Z~1.4-1.5: predominantly symmetric, e.g. FRS(GSI)

From Asymmetry to Symmetry



Fission of Proton-rich nuclei with A~180-200


Courtesy P. Moller (LANL) and J. Randrup (LBNL), 5th ASRC workshop on Fission, Tokai 2012


IS534, 9-14 May 2012: Mass Distributions Measurements of 194,196 Po via β DF of 194,196 At

IS534, 9-14 May 2012: Mass Distributions Measurements of ^{194,196}Po via βDF of ^{194,196}At

May and June 2012: Mass Distributions Measurements via βDF of $^{194,196}At$ and $^{200,202}Fr$

Fission Fragment Mass

Gradual transition from asymmetry in ¹⁸⁰Tl to a mixture of symmetric and asymmetric in ¹⁹⁶At and ²⁰²Fr!

Recent Theory Efforts for the Hg's chain

- Several theory groups have initiated their calculations for the long chain of Hg isotopes
- Must account for asymmetry of ^{178,180}Hg (data by Andreyev et al.)
- •Must account for 'apparent symmetry' of ¹⁹⁸Hg (data by Itkis et al.)
- •Need excitation-energy dependence (as higher-energy data start to become available JAEA experiments by Nishio, Andreyev et al.)

Some examples: 'Brownian Metropolis Shape Motion'

based on J. Randrup and P. Moller, PRL 106, 132503 (2011)

Phys. Rev. C 85, 024306 (2012)

Calculated fission yields of neutron-deficient mercury isotopes

Peter Möller¹,* Jørgen Randrup², and Arnold J. Sierk¹

¹ Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

² Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA

(Dated: November 21, 2011)

The recent unexpected discovery of asymmetric fission of ¹⁸⁰Hg following the electron-capture decay of ¹⁸⁰Tl has led to intense interest in experimentally mapping the fission-yield properties over more extended regions of the nuclear chart and compound-system energies. We present here a first calculation of fission-fragment yields for neutron-deficient Hg isotopes, using the recently developed Brownian Metropolis shape motion treatment. The results for ¹⁸⁰Hg are in approximate agreement with the experimental data. For ¹⁷⁴Hg the symmetric yield increases strongly with decreasing energy, an unusual feature, which would be interesting to verify experimentally. PACS numbers: 25.85.-w, 24.10.Lx,24.75.+i

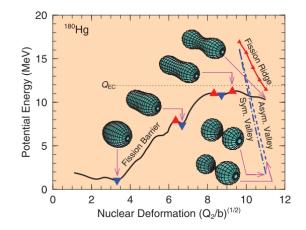
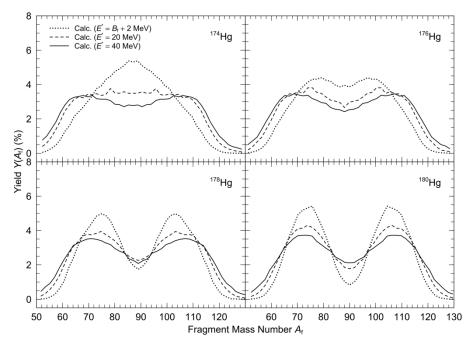
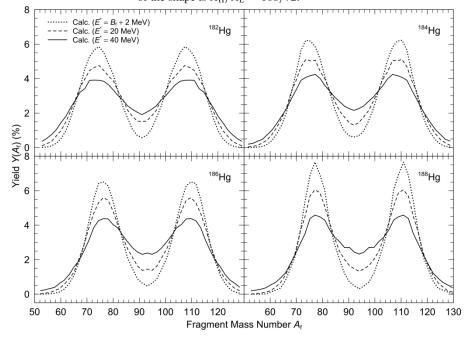
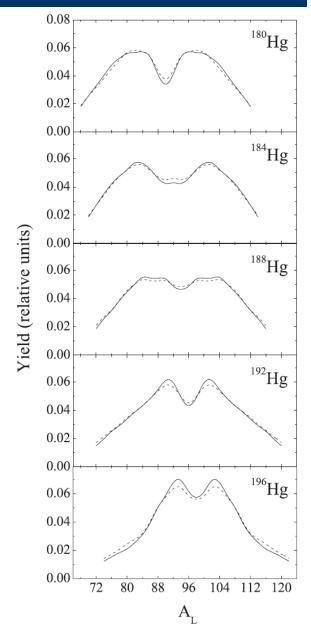




FIG. 4. (Color online) Minima, saddles, major valleys, and ridges in the 5D potential-energy surface of ¹⁸⁰Hg (see text). At the last plotted point on the fission barrier, $(Q_2/b)^{(1/2)} \approx 11$, the asymmetry of the shape is $A_{\rm H}/A_{\rm L} = 108/72$.

Some examples: 'Improved Scission-Point Model'

PHYSICAL REVIEW C 86, 044315 (2012)

Mass distributions for induced fission of different Hg isotopes


A. V. Andreev, G. G. Adamian, and N. V. Antonenko

Joint Institute for Nuclear Research, 141980 Dubna, Russia

(Received 20 June 2012; revised manuscript received 6 September 2012; published 11 October 2012)

With the improved scission-point model mass distributions are calculated for induced fission of different Hg isotopes with even mass numbers $A=180,\ 184,\ 188,\ 192,\ 196,\$ and 198. The calculated mass distribution and mean total kinetic energy of fission fragments are in good agreement with the existing experimental data. The asymmetric mass distribution of fission fragments of 180 Hg observed in the recent experiment is explained. The change in the shape of the mass distribution from asymmetric to more symmetric is revealed with increasing A of the fissioning 4 Hg nucleus, and reactions are proposed to verify this prediction experimentally.

- Inter-fragment distance is not fixed and calculated.
- •values of ~0.5-1 fm result (Wilkins fixed at 1.4 fm)
- •Mass symmetry/asymmetry doesn't change as a function of E* (up to E*~60 MeV) good for future experiments

Some examples: 'Mean-field HFB+Gogny D15'

PHYSICAL REVIEW C 86, 024601 (2012)

Fission modes of mercury isotopes

M. Warda, A. Staszczak, 1,2,3 and W. Nazarewicz^{2,3,4}

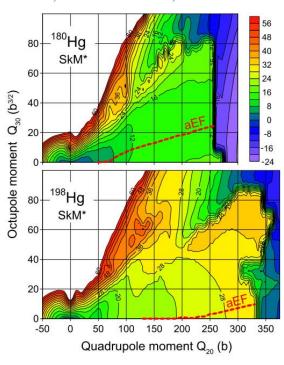


FIG. 2. (Color online) PES for 180 Hg (top) and 198 Hg (bottom) in the plane of collective coordinates $Q_{20}-Q_{30}$ in HFB-SkM*. The aEF fission pathway corresponding to asymmetric elongated fragments is marked. The difference between contour lines is 4 MeV. The effects due to triaxiality, known to impact inner fission barriers in the actinides, are negligible here.

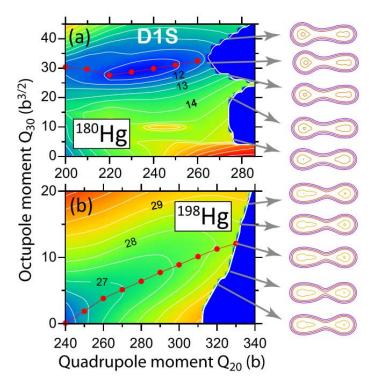
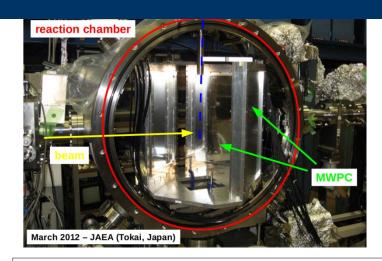


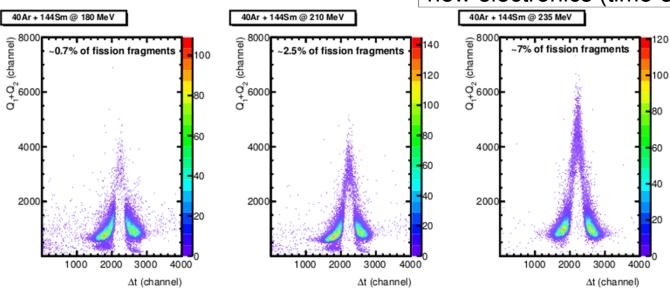
FIG. 3. (Color online) PES in HFB-D1S for 180 Hg (top) and 198 Hg (bottom) in the (Q_{20},Q_{30}) plane in the pre-scission region of aEF valley. The symmetric limit corresponds to $Q_{30}=0$. The aEF valley and density profiles for pre-scission configurations are indicated. The difference between contour lines is 0.5 MeV. Note different Q_{30} -scales in 180 Hg and 198 Hg plots.

Fusion- Fission Reactions at JAEA's tandem

New experiment at JAEA (March-April 2012)


 $36-40Ar + 144Sm \rightarrow 180-184Hg$

 $36-40Ar + 154Sm \rightarrow 190-194Hg$


 $36-40Ar + 142Nd \rightarrow 178-182Pt$

 $90Zr + 90Zr \rightarrow 180Hg$

Ebeam from 160 to 235 MeV

New reaction chamber, larger MWPC new electronics (time-stamping)

Analysis in progress

Mapping beta-delayed fission: from neutron-deficient to neutron-rich nuclei

Invited review in Reviews of Modern Physics

Submitted: Jan. 2013

March 2013: got very positive referees reports

Colloquium: Beta-delayed fission of atomic nuclei

Andrei N. Andreyev*

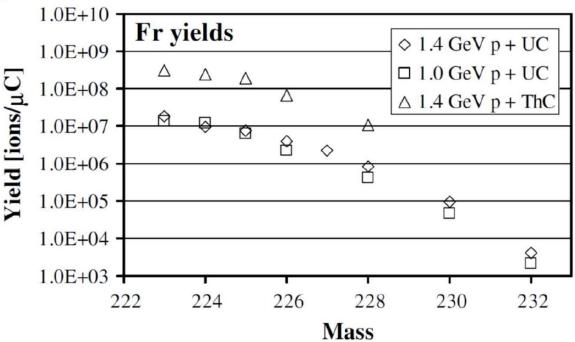
Department of Physics,
University of York,
Heslington, York YO10 5DD,
United Kingdom
Advanced Science Research Centre (ASRC),
Japanese Atomic Energy Agency(JAEA), Tokai-mura,
Japan

Mark Huyse, Piet Van Duppen

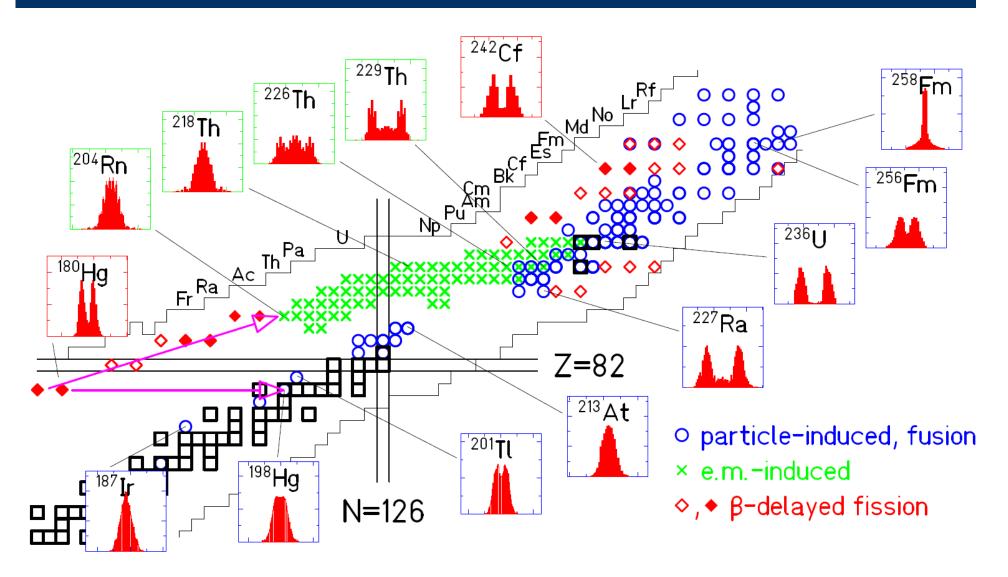
Instituut voor Kern- en Stralingsfysica, KU Leuven, University of Leuven, B-3001 Leuven, Belgium

This Colloquium reviews the studies of exotic type of low-energy nuclear fission, the β -delayed fission (β DF). Emphasis is made on the new data from very neutron-deficient nuclei in the lead region, previously scarcely studied as far as fission is concerned. These

Known Beta-delayed fission nuclei


Isotope	$T_{1/2}$		Production&,	$P_{\beta DF}$	Observables*	References
		[MeV]	Separation,			
e+/EC de	laved fasion in the		Detection			
ρ' / E C − de : ¹⁷⁸ Tl	layed fission in the $252(20)$ ms	1.82		${f 1.5(6)}{ imes}{f 10^{-3}}$	Z,A,T,KE,TKE,MD,GF	(Tibeneti et al. 2012)
¹⁸⁰ Tl	252(20) ms 1.09(1) s	0.63	SR,IS,WM SR,IS,WM	$3.2(2) \times 10^{-5}$	Z,A,T,KE,TKE,MD,GF	
11	0.97 ^{+0.09} _{-0.08} s	0.05	FE,NS,MF	$\sim 3 \times 10^{-(7\pm 1)}$	T,EXF	(Lazarev et al., 1987, 1992)
$^{186m1,m2}{ m Bi}$	0.97 _{-0.08} S	2.09	FE,RS,Si/Ge	$7.6 \times 10^{-2,e}$	T,EXF,KE,GF	(
188m1,m2 Bi	$9.8(4)$, $14.8(8)$ ms# ~ 0.3 s ^c	0.51	FE,NS,MF	$3.4 \times 10^{-4, a,c}$	T,EXF	(Lane et al., 2013) (Lazarev et al., 1992)
ы	~0.3 s ⁴ 265(10), 60(3) ms [#]	0.51	, , , , , , , , , , , , , , , , , , , ,	$(0.16-0.48)\times 10^{-2,f}$		' ' '
192m1.m2 A+	88(6), 11.5(6) ms#	2.09	FE,RS,Si/Ge	$(0.16-0.48)\times 10^{-2}$ $(7-35)\times 10^{-2}$		(Lane et al., 2013)
194m1.m2 At	310(8), 253(10) ms#		FE,RS,Si/Ge	$(7-35) \times 10^{-2}$ $\sim (0.8-1.6) \times 10^{-2}$	T,EXF,KE,GF T.EXF,KE,GF	(Andreyev et al., 2013)
		-0.04	FE,RS,Si/Ge SR,IS,WM	~(0.8-1.6)×10	Z,A,T,KE,TKE,MD,GF	(Andreyev <i>et al.</i> , 2013) (Andreyev <i>et al.</i> , 2012)
¹⁹⁶ At	$0.23^{+0.05}_{-0.03} \text{ s}$	-1.19	FE,NS,MF	$8.8 \times 10^{-4, a}$	T,EXF	(Lazarev et al., 1992)
	0.00		SR,IS,WM		Z,A,T,KE,TKE,MD,GF	(Andreyev et al., 2012)
$^{200}{ m Fr}$	$49(4) \text{ ms}^{\#}$	0.82	SR,IS,WM		Z,A,T,KE,TKE,MD,GF	(Andreyev et al., 2011)
$^{202m1,m2}{ m Fr}$	$0.30(5), 0.29(5) \text{ s}^{\#}$	-1.17	SR,IS,WM		Z,A,T,KE,TKE,MD,GF	,
228 Np	61.4(14) s	-0.87	FE.RC.MG	$2.0(9) \times 10^{-4}$	Z,T,KE,TKE,MD,GF	(Kreek <i>et al.</i> , 1994a)
•	60(5) s		FE,NS,MF	· /	T,EXF	(Kuznetsov et al., 1966)
$^{232}\mathbf{Am}$	$1.31(4) \min$	1.65	FE,RC,MG	$6.9(10) imes 10^{-4}$	Z,T,KE,TKE,MD,GF	(Hall et al., 1990a)
	55(7) s		FE,NS,Si	$(1.3^{+4}_{-0.8}) \times 10^{-2}$	T,KE	(Habs et al., 1978)
	$1.40(25) \min$		FE,NS,MF	6.96×10^{-2}	T,EXF	(Kuznetsov et al., 1967)
$^{234}\mathbf{Am}$	2.32(8) min	0.29	FE,RC,MG	$6.6(18) \times 10^{-5}$	Z,T,KE,TKE,MD,GF	(Hall <i>et al.</i> , 1989a, 1990b)
	$2.6(2) \min$		FE,NS,MF	$\sim 6.95 \times 10^{-5}$	T,EXF	(Kuznetsov et al., 1967)
$^{238}\mathbf{Bk}$	144(5) s	-0.15	FE,RC,MG	$4.8(20) imes 10^{-4}$	Z,T,KE,TKE,MD,GF	(Kreek <i>et al.</i> , 1994b)
$^{240}\mathbf{Bk}$	4.2(8) min	-1.99	FE,NS,MF	$(1.3^{+1.8}_{-0.7}) \times 10^{-5}$	T	(Galeriu, 1983)
	5(2) min		FE,NS,MF	$1 \times 10^{-5, b}$	T	(Gangrsky et al., 1980)
$^{242}\mathbf{Es}$	11(3) s	-0.94	FE,RC,MG	$0.6(2) \times 10^{-2}$	Z,T,KE,TKE,MD	(Shaughnessy et al., 2000)
	5-25 s		FE,RS,Si	$1.4(8) \times 10^{-2}$	T,KE	(Hingmann et al., 1984)
	17.8(16) s		FE,RS,Si	$(1.3^{+1.2}_{-0.7}) \times 10^{-2}$	T,KE	(Antalic et al., 2010)
244 Es	38(11) s	-2.24	FE,RC,MG	$1.2(4) \times 10^{-4}$	Z,T,KE,TKE,MD	(Shaughnessy et al., 2002)
			FE,NS,MF	$1 \times 10^{-4, b}$	Т	(Gangrsky et al., 1980)
246 Es	7.7(5) min	-3.47	FE,RC,MG	$(3.7^{+8.5}_{-3.0}) \times 10^{-5}$	Z,T,KE	(Shaughnessy et al., 2001)
	8 min		FE,NS,MF	$3 \times 10^{-5, b}$	T	(Gangrsky <i>et al.</i> , 1980)
^{248}Es	23(3) min	-4.26	FE,RC,MG	$3.5(18) \times 10^{-6}$	Z,T,KE	(Shaughnessy et al., 2001)
Lis	20(0) 11111	2.20	FE,NS,MF	$3 \times 10^{-7, b}$	T T	(Gangrsky et al., 1980)
246m1,m2 Md	0.9(2), 4.4(8) s	0.14	FE,RS,Si	$>1 \times 10^{-1}$	T.KE	(Antalic et al., 2010)
	$1.0(4) \text{ s}^c$		FE,RS,Si	$\sim 0.65 \times 10^{-1}$	T.KE	(Ninov et al., 1996)
$^{250}\mathrm{Md}$	52(6) s#	-2.64	FE,NS,MF	$2\times 10^{-4,\;b}$	T	(Gangrsky et al., 1980)
β^- –delayed	d fission in the neu	tron-rich	isotopes			
^{228}Ac	6.15(2) h#	-4.45	LLP,RC,MF/Ge	$5(2) \times 10^{-12}$		(Yanbing et al., 2006)
$^{230}{ m Ac}$	122(3) s#	-2.73	TR,RC,MF/Ge	$1.19(40) \times 10^{-8}$		(Shuanggui et al., 2001)
256m Es	7.6 h#	-3.23	TR,RC,Si/Ge	2×10^{-5}	T,KE	(Hall et al., 1989b)
234gs Pa	6.70(5) h#	-2.55	NI,NS,MF	$3 \times 10^{-12, d}$	T	(Gangrsky et al., 1978)
234m Pa	1.159(11) min#		LLP,RC,MF	$10^{-12, d}$	T	(Gangrsky et al., 1978)
²³⁶ Pa	9.1(1) min#	-2.02	SR,RC,MF/Ge	$\sim 10^{-9}$	T	(Batist et al., 1977)
	5 f		FE/GI,NS,MF	$10^{-9, d}/3 \times 10^{-10, d}$	T	(Gangrsky et al., 1978)
²³⁸ Pa	2.3(1) min#	-2.14	NI,NS,MF	6×10^{-7} , 1×10^{-8} , d	T	(Gangrsky et al., 1978)
	5. 2		NI,RC,MF	$< 2.6 \times 10^{-8}$		(Baas-May et al., 1985)

Beta-delayed fission in the neutron-rich Fr nuclei


Isotope	$T_{1/2}$	Q_{EC} – B_f	Production	$P_{eta DF}$
		[MeV]	Separation,	Upper Limit
			Detection	
	$7.0(13) \text{ min}^{\#}$	-3.49	FE,NS,MF	$< 3 \times 10^{-7}$
	$7(3) \text{ s}^{\#}$	-1.45	FE,NS,MF	$< 5 \times 10^{-4}$
$^{228}\mathrm{Fr}^{b}$	$38(1) \text{ s}^{\#}$	-3.33	SR,IS,Si/Ge	$< 2 \times 10^{-7}$
$^{230}\mathrm{Fr}^{b}$	$19.1(5) \text{ s}^{\#}$	-2.05	SR,IS,Si/Ge	$< 3 \times 10^{-6}$
$^{232}\mathrm{Fr}^{b}$	5.5(6) s	-1.34	SR,IS,Si/Ge	$<7\times10^{-4,c}$
$^{232}\mathrm{Ac}^{b}$	119(5) s	-1.75	SR,IS,Si	$< 10^{-6}$

[#] Evaluated half-life value from (ENSDF, 2013).

- a) Studied by (Gangrsky et al., 1978).
- b) Studied by (Mezilev et al., 1990).
- c) Different limits for different β γ transitions.

Mapping 'Terra Incognita' in Low-Energy Fission

To be shown in: A. N. Andreyev, M. Huyse, P. Van Duppen, "Beta-delayed Fission", Review of Modern Physics (under refereeing now)

Thank you!