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Mean-field approximation and Landau theory
We consider the Hamiltonian:

𝐻 = �̂�𝑖𝜆𝑖 𝑗 �̂� 𝑗 .

For repeated indices, we take the sum. We consider a mean-field Hamiltonian
given by

𝐻 (𝑴) = 𝑀𝑖𝜆𝑖 𝑗 �̂� 𝑗 + �̂�𝑖𝜆𝑖 𝑗𝑀 𝑗 − 𝑀𝑖𝜆𝑖 𝑗𝑀 𝑗 ,

where 𝑴 is called an order parameter. We assume that the order parameter
transforms in the same way as the operator �̂� under symmetry operations. Then
the mean-field Hamiltonian has the same symmetry as the original Hamiltonian.
The original and mean-field Hamiltonians have the following relationship:

𝐻 = 𝐻 (𝑴) + (�̂�𝑖 − 𝑀𝑖)𝜆𝑖 𝑗 (�̂� 𝑗 − 𝑀 𝑗 ).

In the mean-field approximation, we ignore the fluctuations given by the last term
in this equation. In the non-ordered state with 𝑴 = 0 or the critical region
with small 𝑴 around the transition point, the non-fluctuation terms are zero or
very small and the mean-field approximation is not justified. In the mean-field
approximation, we assume that 𝑴 is equal to the expectation value of �̂� in the
mean-filed Hamiltonian:

𝑴 = ⟨�̂�⟩MF =
Tr�̂�𝑒−𝛽𝐻 (𝑴)

Tr𝑒−𝛽𝐻 (𝑴) .

It is called a mean-field equation.
We consider the free energy of the mean-field Hamiltonian:

𝐹 (𝑴) = −1
𝛽

ln Tr𝑒−𝛽𝐻 (𝑴) .

By using

𝜕𝐻 (𝑴)
𝜕𝑀𝑖

= 𝜆𝑖 𝑗 �̂� 𝑗 + �̂� 𝑗𝜆 𝑗𝑖 − 𝜆𝑖 𝑗𝑀 𝑗 − 𝑀 𝑗𝜆 𝑗𝑖

= 𝜆𝑖 𝑗 (�̂� 𝑗 − 𝑀 𝑗 ) + (�̂� 𝑗 − 𝑀 𝑗 )𝜆 𝑗𝑖

= (𝜆𝑖 𝑗 + 𝜆 𝑗𝑖)(�̂� 𝑗 − 𝑀 𝑗 ),
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the derivative of 𝐹 (𝑴) with respect to 𝑀𝑖 is

𝜕𝐹 (𝑴)
𝜕𝑀𝑖

=
Tr 𝜕𝐻 (𝑴)

𝜕𝑀𝑖
𝑒−𝛽𝐻 (𝑴)

Tr𝑒−𝛽𝐻 (𝑴) = (𝜆𝑖 𝑗 + 𝜆 𝑗𝑖)(⟨�̂� 𝑗 ⟩MF − 𝑀 𝑗 ).

Therefore the condition that 𝐹 (𝑴) is an extremum is equivalent to the mean-field
equation. However, only from the above discussion, we cannot determine which
solution we should choose when there are multiple solutions.

Then, we assume ⟨𝐻 (𝑴)⟩MF = ⟨𝐻⟩MF when the mean-field equation holds.
In this case, we should choose the solution with the lowest free energy based on
the Bogoliubov-Feynman inequality (cf. calculation memo “Variational principle
for free energy”). From this discussion, we can use 𝐹 (𝑴) as the free energy of
the Landau theory and we should minimize this.

In the actual calculation of mean-field approximation, it is usually easier to
solve the mean-field equation than to minimize the free energy and the following
procedure is often applied:

1. Choose a mean-field Hamiltonian that satisfies ⟨𝐻 (𝑴)⟩MF = ⟨𝐻⟩MF when
the mean-field equation holds.

2. Solve the mean-field equation.

3. Select the solution with the lowest free energy.

Mean-field approximation for the Ising model
We consider the following Hamiltonian:

𝐻 = −𝐽
∑
<𝑖, 𝑗>

�̂�𝑖�̂� 𝑗 ,

where �̂�𝑖 = ±1, 𝑖 and 𝑗 represent lattice sites, <𝑖, 𝑗> denotes summation over pairs
of nearest-neighboring sites. We consider an order parameter 𝑀 independent of
the site. Then, the mean-field Hamiltonian is given by

𝐻 (𝑀) = −𝐽
∑
<𝑖, 𝑗>

(
𝑀�̂� 𝑗 + �̂�𝑖𝑀 − 𝑀2

)
= −𝐽

∑
<𝑖, 𝑗>

(
2𝑀�̂�𝑖 − 𝑀2

)
= −𝐽

∑
𝑖

𝑧

2

(
2𝑀�̂�𝑖 − 𝑀2

)
= 𝑁

𝑧

2
𝐽𝑀2 − 𝑧𝐽𝑀

∑
𝑖

�̂�𝑖 .
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Here, 𝑧 is the number of nearest-neighboring lattice sites and 𝑁 is the total number
of the lattice sites. In this mean-field Hamiltonian, we can sum the states at each
site independently and then, ⟨�̂�𝑖�̂� 𝑗 ⟩MF = ⟨�̂�𝑖⟩MF⟨�̂� 𝑗 ⟩MF. In addition, if the
mean-field equation ⟨�̂�𝑖⟩MF = 𝑀 holds, we obtain ⟨𝐻 (𝑀)⟩MF = ⟨𝐻⟩MF.

⟨�̂�𝑖⟩MF =
𝑒𝛽𝑧𝐽𝑀 − 𝑒−𝛽𝑧𝐽𝑀

𝑒𝛽𝑧𝐽𝑀 + 𝑒−𝛽𝑧𝐽𝑀
= tanh(𝛽𝑧𝐽𝑀).

Then, the mean-field equation is 𝑀 = tanh(𝛽𝑧𝐽𝑀). For 𝐽 ≤ 0, there is only one
solution 𝑀 = 0. In the following, we assume 𝐽 > 0. For 0 ≤ 𝑀 ≪ 1,

𝑀 = tanh(𝛽𝑧𝐽𝑀) ≃ 𝛽𝑧𝐽𝑀 − 1
3
(𝛽𝑧𝐽)3𝑀3.

From the coefficients of 1st-order terms of 𝑀 , a solution with non-zero 𝑀 appears
for 𝑇 < 𝑇c = 𝑧𝐽. By using this, we can rewrite the above equation as(

𝑇c
𝑇

− 1
)
𝑀 ≃ 1

3

(
𝑇c
𝑇

)3
𝑀3.

Then, for 𝑇 ≲ 𝑇c, we obtain a solution with non-zero 𝑀:

𝑀 ≃
√

3(𝑇c − 𝑇)/𝑇c.

However, we cannot determine which solution, 𝑀 = 0 or 𝑀 ≠ 0, should we choose
only from this calculation.

Landau theory for the Ising model

Tr𝑒−𝛽𝐻 (𝑀) = Tr𝑒−𝛽
(
𝑁 𝑇c

2 𝑀2−𝑇c𝑀
∑

𝑖 �̂�𝑖

)
= 𝑒−𝛽𝑁

𝑇c
2 𝑀2

Tr𝑒𝛽𝑇c𝑀
∑

𝑖 �̂�𝑖

= 𝑒−𝛽𝑁
𝑇c
2 𝑀2

Tr
∏
𝑖

𝑒𝛽𝑇c𝑀�̂�𝑖

= 𝑒−𝛽𝑁
𝑇c
2 𝑀2

(
𝑒𝛽𝑇c𝑀 + 𝑒−𝛽𝑇c𝑀

)𝑁
.
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We expand the free energy up to 4th order in 𝑀 . By using

ln(𝑒𝑥 + 𝑒−𝑥) = ln
[(

1 + 𝑥 + 𝑥2

2
+ 𝑥3

6
+ 𝑥4

24
+ · · ·

)
+
(
1 − 𝑥 + 𝑥2

2
− 𝑥3

6
+ 𝑥4

24
+ · · ·

)]
= ln

[
2
(
1 + 𝑥2

2
+ 𝑥4

24
+ · · ·

)]
= ln 2 + ln

(
1 + 𝑥2

2
+ 𝑥4

24
+ · · ·

)
= ln 2 +

(
𝑥2

2
+ 𝑥4

24
+ · · ·

)
− 1

2

(
𝑥2

2
+ 𝑥4

24
+ · · ·

)2

+ · · ·

≃ ln 2 + 𝑥2

2
− 𝑥4

12
,

𝐹 (𝑀) = −𝑇 ln Tr𝑒−𝛽𝐻 (𝑀) = 𝑁
𝑇c
2
𝑀2 − 𝑁𝑇 ln

(
𝑒𝛽𝑇c𝑀 + 𝑒−𝛽𝑇c𝑀

)
≃ 𝑁

𝑇c
2
𝑀2 − 𝑁𝑇 ln 2 − 𝑁𝑇

1
2

(
𝑇c
𝑇

)2
𝑀2 + 𝑁𝑇

1
12

(
𝑇c
𝑇

)4
𝑀4

= −𝑁𝑇 ln 2 + 𝑁

[
−𝑇c

2

(
𝑇c
𝑇

− 1
)
𝑀2 + 𝑇c

12

(
𝑇c
𝑇

)3
𝑀4

]
.

𝑑𝐹 (𝑀)
𝑑𝑀

≃ 𝑁𝑀𝑇c

[
−
(
𝑇c
𝑇

− 1
)
+ 1

3

(
𝑇c
𝑇

)3
𝑀2

]
.

Thus, for 𝑇 ≲ 𝑇c, we obtain a non-zero 𝑀 solution of 𝑑𝐹 (𝑀)/𝑑𝑀 = 0,

𝑀 ≃
√

3(𝑇c − 𝑇)/𝑇c,

as obtained by solving the mean-field equation directly. In addition, we find that
the above solution 𝑀 ≠ 0 minimizes 𝐹 (𝑀) since the coefficient of 𝑀2 in 𝐹 (𝑀)
is negative at 𝑇 ≲ 𝑇c.

Even without expanding 𝐹 (𝑀), we can easily show that the condition that
𝐹 (𝑀) is an extremum is equivalent to the mean-field equation:

𝑑𝐹 (𝑀)
𝑑𝑀

= 𝑁𝑇c𝑀 − 𝑁𝑇𝛽𝑇c
𝑒𝛽𝑇c𝑀 − 𝑒−𝛽𝑇c𝑀

𝑒𝛽𝑇c𝑀 + 𝑒−𝛽𝑇c𝑀

= 𝑁𝑇c

[
𝑀 − tanh

(
𝑇c
𝑇
𝑀

)]
.

4


